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INTRODUCTION TO HIERARCHICAL MODELS

The terminology hierarchical model is quite general and can imply anything
from simple use of a prior distribution to a highly organized data hierarchy
(students nested in classes nested in schools nested in school systems nested
in states nested in countries).

For grouped or nested data for example, we may want to infer or estimate
the relationship between a response variable and certain predictors collected
across all the groups.

In that case, we should do so in a way that takes advantage of the
relationship between observations in the same group, but we should also look
to borrow information across groups.
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INTRODUCTION TO HIERARCHICAL MODELS

Hierarchical models are often used in the following commonly-encountered
settings:

members of a "cluster" share more similarities with each other than with
members of other clusters, violating the typical independence
assumption of generalized linear models (like linear or logistic regression)
-- examples of clusters include members of a family or students in a class

hypotheses of interest include context-dependent associations, often
across a large number of settings -- e.g., does success of a new mode of
instruction depend on the individual teacher

it is necessary to borrow information across groups in order to stabilize
estimates or to obtain estimates with desirable properties -- e.g., we
want to make state-specific estimates of election candidate preference
by country of origin, but some states may have few immigrants from a
given country
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HYPOTHETICAL SCHOOL TESTING EXAMPLE

Suppose we wish to estimate the distribution of test scores for students at 
different high schools.

In each school , where , suppose we test a random sample of 
 students.

Let  be the test score for the th student in school , with .

Option I: estimation can be done separately in each group, where we assume

where for each school ,  is the school-wide average test score, and  is

the school-wide variance of individual test scores.
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HYPOTHETICAL SCHOOL TESTING EXAMPLE

We can do classical inference for each school based on large sample 95% CI: 

, where  is the sample average in school , and  is the

sample variance in school .

Clearly, we can overfit the data within schools, for example, what if we only
have 4 students from one of the schools?

Option II: alternatively, we might believe that  for all ; that is, all
schools have the same mean. This is the assumption (null hypothesis) in
ANOVA models for example.

Option I ignores that the 's should be reasonably similar, whereas option II
ignores any differences between them.

It would be nice to find a compromise!

This is what we are able to do with hierarchical modeling.
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HIERARCHICAL MODEL

Once again, suppose

We can assume that the 's are drawn from a distribution based on the
following: conceive of the schools themselves as being a random sample from
all possible school.

Suppose  is the overall mean of all school's average scores (a mean of the
means), and  is the variance of all school's average scores (a variance of
the means).

Then, we can think of each  as being drawn from a distribution, e.g.,

which gives us one more level, resulting in a hierarchical specification.

Usually,  and  will also be unknown so that we need to estimate them
(usually MLE or Bayesian methods).

yij|μj, σ2
j ∼ N (μj, σ2

j) ;    i = 1, … , nj;    j = 1, … , J.

μj

μ0

τ 2

μj

μj|μ0, τ 2 ∼ N (μ0, τ 2) ,

μ0 τ 2

6 / 13



HIERARCHICAL MODEL: SCHOOL TESTING

EXAMPLE

Back to our example, it turns out that the multilevel estimate is

but since the unknown parameters have to be estimated, the classical
estimate is

where  is the completely pooled estimate (the overall sample mean of all
test scores).
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HIERARCHICAL MODEL: IMPLICATIONS

Our estimate for each  is a weighted average of  and , ensuring that

we are borrowing information across all levels through  and .

The weights for the weighted average is determined by relative precisions
(the inverse of variance is often referred to as precision) from the data and
from the second level model.

Suppose all . Then the schools with smaller  have estimated 

closer to  than schools with larger .

Thus, the hierarchical model shrinks estimates with high variance towards the
grand mean.

We seek to specify models like this in many different contexts, for many
reasons, including the idea of "shrinkage".

We will do this over and over throughout the course.

μj ȳ j μ0

μ0 τ 2

σ2
j ≈ σ2 nj μj

μ0 nj
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GENERALIZED LINEAR MODELS (GLM)
The generalized linear model framework accommodates many popular
statistical models, including linear regression, logistic regression, probit
regression, and Poisson regression, among others.

Two popular GLM's we will use in class include the linear regression model
and the logistic regression model.
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LINEAR REGRESSION

Linear regression is perhaps the most widely-used statistical model.

Recall that the model is given by

where

If the parameter , then increasing levels of  are associated with
larger expected values of , and values of  are associated with smaller
expected values of .

 is consistent with no association between  and .

yi = β0 + β1x1i + ⋯ + βpxpi + εi,

εi ∼ N (0, σ2) .

βj > 0 xj

y βj < 0
y

βj = 0 xj y
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LOGISTIC REGRESSION

Logistic regression is a type of generalized linear model, which generalizes
the typical linear model to binary data.

Let  take either the value 1 or the value 0 (the labels assigned to 1 and 0
are arbitrary -- that is, we could let 1 denote voters and 0 denote non-voters,
or we could exchange the labels -- we just need to remember our coding).

The logistic regression model is linear on the log of the odds:

where .

If the parameter , then increasing levels of  are associated with
higher probabilities that , and values of  are associated with
lower probabilities that .

 is consistent with no association between  and .

yi

log = β0 + β1x1i + ⋯ + βpxpi,
πi

1 − πi

πi = Pr(yi = 1)
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HIERARCHICAL MODEL: DEMO

For some intuition behind hierarchical models, we'll check out this neat
tutorial by Michael Freeman at University of Washington.
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http://mfviz.com/hierarchical-models/


WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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