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CHALLENGE TO VALIDITY: HETEROGENEOUS

MEANS AND VARIANCES

We have looked at the hierarchical normal model of the form

The model gives us an extra hierarchy through the prior on the means,
leading to sharing of information across the groups, when estimating the
group-specific means.

While many people feel that shrinkage can "do no harm," it can be quite
detrimental when the shrinkage target is not correctly specified.

yij|μj, σ2 ∼ N (μj, σ2) ;    i = 1, … , nj

μj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J.
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MORTALITY BY VOLUME
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ESTIMATED RANDOM INTERCEPTS BY VOLUME
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GROUP-SPECIFIC VARIANCES

How might we specify a model to avoid these problems? We could introduce
predictors to model group means and or group variances.

Another potential challenge is that the variance of the response may not be
the same for each group anyway. This could be due to a variety of factors.

One potential remedy for this issue is to allow the error variance to differ
across groups. A natural extension is

αj ∼ N(μj(z), τ 2
j (z))

σ2
1 , … , σ2

J
|ν0, σ2

0 ∼ IG( , )
ν0

2

ν0σ2
0

2
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POSTERIOR INFERENCE

The full posterior is now:

π(μ1, … , μJ , σ2
1 , … , σ2

J
, μ, τ 2, ν0, σ2

0 |Y ) ∝ p(y|μ1, … , μJ , σ2
1 , … , σ2

J
, μ, τ 2, ν0, σ2

0)

     × p(μ1, … , μJ |σ2
1 , … , σ2

J
, μ, τ 2, ν0, σ2

0)

     × p(σ2
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J
|μ, τ 2, ν0, σ2

0)
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= p(y|μ1, … , μJ , σ2
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J
)
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J
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∏
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FULL CONDITIONALS

Notice that this new factorization won't affect the full conditionals for 
and  from before, since those have nothing to do with all the new 's.

That is,

and

μ
τ 2 σ2

j

π(μ| ⋯ ⋯) = N (μn, γ2
n)     where

γ2
n = ;         μn = γ2

n [ θ̄ + μ0] ,
1

+
J

τ 2

1

γ2
0

J

τ 2

1

γ2
0

π(τ 2| ⋯ ⋯) = IG( , )     where

ηn = η0 + J;        τ 2
n = [η0τ 2

0 +
J

∑
j=1

(μj − μ)2] .

ηn

2

ηnτ 2
n

2

1

ηn
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FULL CONDITIONALS

The full conditional for each , we have

with the only change from before being .

That is, those terms still include a normal density for  multiplied by a
product of normals in which  is the mean, again mirroring the previous
case, so you can show that

μj

π(μj|μ−j, μ, σ2
1 , … , σ2

J , τ 2, Y ) ∝ {
nj

∏
i=1

p(yij|μj, σ2
j
)} ⋅ p(μj|μ, τ 2)

σ2
j

μj

μj

π(μj|μ−j, μ, σ2
1 , … , σ2

J , τ 2, Y ) = N (μ⋆
j
, τ ⋆

j
)     where

τ ⋆
j = ;        μ⋆

j
= τ ⋆

j
[ ȳ j + μ]

1

+
nj

σ2
j

1

τ 2

nj

σ2
j

1
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HOW ABOUT WITHIN-GROUP VARIANCES?
Before we get to the choice of the priors for  and , we have enough

to derive the full conditional for each . This actually takes a similar

form to what we had before we indexed by , that is,

This still looks like what we had before, that is, products of normals and
one inverse-gamma, so that

ν0 σ2
0

σ2
j

j

π(σ2
j |σ2

−j, μ1, … , μJ , μ, τ 2, ν0, σ2
0 , Y ) ∝ {

nj

∏
i=1

p(yij|μj, σ2
j
)} ⋅ π(σ2

j
|ν0, σ2

0)

π(σ2
j |σ2

−j, μ1, … , μJ , μ, τ 2, ν0, σ2
0 , Y ) = IG

⎛
⎜
⎝

,
⎞
⎟
⎠

    where

ν⋆
j = ν0 + nj;        σ

2(⋆)
j = [ν0σ2

0 +

nj

∑
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(yij − μj)
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REMAINING HYPER-PRIORS

Now we can get back to priors for  and . Turns out that a semi-
conjugate prior for  (you have seen this on the homework) is a gamma
distribution. That is, if we set

then,

Recall that

, and

.

ν0 σ2
0

σ2
0

π(σ2
0) = Ga (a, b) ,

π(σ2
0 |μ1, … , μJ , σ2

1 , … , σ2
J
, μ, τ 2, ν0, Y ) ∝ {

J

∏
j=1

p(σ2
j
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0)} ⋅ π(σ2
0)

∝  IG(σ2
j
; , )   ⋅  Ga (σ2

0 ; a, b)
ν0

2

ν0σ2
0

2

Ga(y; a, b) ≡ ya−1e−byba

Γ(a)

IG(y; a, b) ≡ y−(a+1)e
−ba

Γ(a)

b

y
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REMAINING HYPER-PRIORS

So π(σ2
0 |μ1, … , μJ , σ2
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REMAINING HYPER-PRIORS

That is, the full conditional is

where
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REMAINING HYPER-PRIORS

Ok that leaves us with one parameter to go, i.e., . Turns out there is
no simple conjugate/semi-conjugate prior for .

Common practice is to restrict  to be an integer (which makes sense
when we think of it as being degrees of freedom, which also means it
cannot be zero). With the restriction, we need a discrete distribution as
the prior with support on .

Question: Can we use either a binomial or a Poisson prior on for ?

A popular choice is the geometric distribution with pmf 
.

However, we will rewrite the kernel as . How did we get
here from the geometric pmf and what is ?

ν0

ν0

ν0

ν0 = 1, 2, 3, …

ν0

p(ν0) = (1 − p)ν0−1p

π(ν0) ∝ e−αν0

α
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FINAL FULL CONDITIONAL

With this prior, π(ν0|μ1, … , μJ , σ2
1 , … , σ2

J , μ, τ 2, σ2
0 , Y )

∝ {
J

∏
j=1

p(σ2
j |ν0, σ2

0)} ⋅ π(ν0)

∝  
J

∏
j=1

 IG(σ2
j ; , )   ⋅  e−αν0

=

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

J

∏
j=1

(σ2
j
)

−( +1)
e

−

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

⋅ e−αν0

∝

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

⎛
⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜
⎝

⎞
⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟
⎠

J

⋅ (
J

∏
j=1

)

( +1)

⋅ e

−ν0

⎡
⎢ ⎢
⎣

J

∑
j=1

⎤
⎥ ⎥
⎦

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

⋅ e−αν0

ν0

2

ν0σ2
0

2

( )

( )
ν0σ2

0

2

ν0

2

Γ( )
ν0

2

ν0

2

ν0σ2
0

2(σ2
j
)

( )

( )
ν0σ2

0

2

ν0

2

Γ( )
ν0

2

1

σ2
j

ν0

2

σ2
0

2

1

σ2
j

14 / 21



FINAL FULL CONDITIONAL

That is, the full conditional is

which is not a known kernel and is thus unnormalized (i.e., does not
integrate to 1 in its current form).

This sure looks like a lot, but it will be relatively easy to compute in R.

Now, technically, the support is , however, we can
compute this to compute the unnormalized distribution across a grid of 

 values, say,  for some large , and then sample.
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⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

⎛
⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜
⎝

⎞
⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟
⎠

J

⋅ (
J

∏
j=1

)

( +1)

⋅ e

−ν0

⎡
⎢ ⎢
⎣

α+
J

∑
j=1

⎤
⎥ ⎥
⎦

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

,

( )

( )
ν0σ2

0

2

ν0

2

Γ( )
ν0

2

1

σ2
j

ν0

2

σ2
0

2

1

σ2
j

ν0 = 1, 2, 3, …

ν0 ν0 = 1, 2, 3, … , K K

15 / 21



FINAL FULL CONDITIONAL

One more thing, computing these probabilities on the raw scale can be
problematic particularly because of the product inside. Good idea to
transform to the log scale instead.

That is,
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FULL MODEL

As a recap, the final model is:

yij|μj, σ2
j

∼ N (μj, σ2
j) ;    i = 1, … , nj;    j = 1, … , J

μj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J

σ2
1 , … , σ2

J |ν0, σ2
0 ∼ IG( , ) ;    j = 1, … , J

μ ∼ N (μ0, γ2
0)

τ 2 ∼ IG( , ) .

π(ν0) ∝ e−αν0

σ2
0 ∼ Ga (a, b) .
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2
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GIBBS SAMPLER

#Data summaries
J <- #number of groups
ybar <- #vector of the group sample means
s_j_sq <- #vector of the group sample variances
n <- #vector of the number of observations in each group

#Hyperparameters for the priors
mu_0 <- ...
gamma_0_sq <- ...
eta_0 <- ...
tau_0_sq <- ...
alpha <- ...
a <- ...
b <- ...

#Grid values for sampling nu_0_grid
nu_0_grid <- 1:5000

#Initial values for Gibbs sampler
theta <- ybar #theta vector for all the mu_j's
sigma_sq <- s_j_sq
mu <- mean(theta)
tau_sq <- var(theta)
nu_0 <- 1
sigma_0_sq <- 100
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GIBBS SAMPLER

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

#Set null matrices to save samples
SIGMA_SQ <- THETA <- matrix(nrow=n_iter, ncol=J)
OTHER_PAR <- matrix(nrow=n_iter, ncol=4)

#Now, to the Gibbs sampler
for(s in 1:(n_iter+burn_in)){

  #update the theta vector (all the mu_j's)
  tau_j_star <- 1/(n/sigma_sq + 1/tau_sq)
  mu_j_star <- tau_j_star*(ybar*n/sigma_sq + mu/tau_sq)
  theta <- rnorm(J,mu_j_star,sqrt(tau_j_star))

  #update the sigma_sq vector (all the sigma_sq_j's)
  nu_j_star <- nu_0 + n
  theta_long <- rep(theta,n)
  nu_j_star_sigma_j_sq_star <- 
    nu_0*sigma_0_sq + c(by((Y[,"mathscore"] - theta_long)^2,Y[,"school"],sum))
  sigma_sq <- 1/rgamma(J,(nu_j_star/2),(nu_j_star_sigma_j_sq_star/2))

  #update mu
  gamma_n_sq <- 1/(J/tau_sq + 1/gamma_0_sq)
  mu_n <- gamma_n_sq*(J*mean(theta)/tau_sq + mu_0/gamma_0_sq)
  mu <- rnorm(1,mu_n,sqrt(gamma_n_sq))
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GIBBS SAMPLER

  #update tau_sq
  eta_n <- eta_0 + J
  eta_n_tau_n_sq <- eta_0*tau_0_sq + sum((theta-mu)^2)
  tau_sq <- 1/rgamma(1,eta_n/2,eta_n_tau_n_sq/2)

  #update sigma_0_sq
  sigma_0_sq <- rgamma(1,(a + J*nu_0/2),(b + nu_0*sum(1/sigma_sq)/2))

  #update nu_0
  log_prob_nu_0 <- (J*nu_0_grid/2)*log(nu_0_grid*sigma_0_sq/2) -
    J*lgamma(nu_0_grid/2) +
    (nu_0_grid/2+1)*sum(log(1/sigma_sq)) -
    nu_0_grid*(alpha + sigma_0_sq*sum(1/sigma_sq)/2)
  nu_0 <- sample(nu_0_grid,1, prob = exp(log_prob_nu_0 - max(log_prob_nu_0)) )
  #this last step substracts the maximum logarithm from all logs
  #it is a neat trick that throws away all results that are so negative
  #they will screw up the exponential
  #note that the sample function will renormalize the probabilities internally

  #save results only past burn-in
  if(s > burn_in){
    THETA[(s-burn_in),] <- theta
    SIGMA_SQ[(s-burn_in),] <- sigma_sq
    OTHER_PAR[(s-burn_in),] <- c(mu,tau_sq,sigma_0_sq,nu_0)
  }
}
colnames(OTHER_PAR) <- c("mu","tau_sq","sigma_0_sq","nu_0")
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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