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READING

This set of notes is based on Andrew Gelman's 2006 paper on priors for
variance components in hierarchical models.
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http://www.stat.columbia.edu/~gelman/research/published/taumain.pdf


HIERARCHICAL NORMAL MODEL

Recall our model:

also written as

with priors

yij|μj,σ
2 ∼ N (μj,σ

2) ;    i = 1, … ,nj

μj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,

yij = μ + αj + εij = μj + εij;    i = 1, … ,nj

εij
iid
∼ N (0,σ2) ;     μj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,

π(μ) = N (μ0, γ2
0)

π(τ 2) = IG( , )

π(σ2) = IG( , ) .
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RELATIVELY NONINFORMATIVE PRIORS

It is often of interest to specify relatively noninformative priors for
parameters.

In general, we have enough data so that we can use any reasonable prior
distribution for  and , for example .

Picking a "flattish prior" for  is trickier because sometimes our data do not
contain a lot of information about this parameter -- e.g., we may have
relatively few groups, which is the case in our bike data.

This parameter is also problematic in frequentist models -- in particular there
is no "always-non-negative" classical unbiased estimator for it.

μ σ p(μ,σ) ∝ 1

τ 2
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HIGH VARIANCE PRIORS

One basic idea is to base a prior on a proper density but inflate the variance
so that its shape gets pretty flat.

Two commonly considered priors for  include the uniform(0,A) as 
and  as .

τ A → ∞
IG(ε, ε) ε → 0
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LIMITS OF PRIOR DISTRIBUTIONS

Gelman shows

the uniform(0,A) prior on  yields a limiting proper posterior density as 
 as long as we have at least 3 groups. The implication is that if

we pick A big enough, our resulting inferences are not sensitive to the
choice of A.

the  for  does not have a proper limiting posterior, so that
posterior inferences are sensitive to the value of  chosen, particularly
when small values of  are reasonable.

Unfortunately, these 'small ' priors became quite popular due to being
used in many illustrative examples in the WinBUGS manuals, though they
are no longer recommended.

τ
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IG(ε, ε) τ 2

ε
τ 2
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PARAMETER EXPANSION

Gelman (2006) proposes a parameter expansion that facilitates a family of
weakly-informative prior distributions.

In this case the parameters  correspond to  in this model, and 
corresponds to  here.

yij ∼ N(μ + ξηj,σ
2)

ηj ∼ N(0,σ2
η)

αj ξηj τ

|ξ|ση
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PARAMETER EXPANSION

For simplicity, consider independent priors on  and . A conditionally-
conjugate choice for  is normal -- and given that the scale of  cannot be
separately identified from that of , a N(0,1) is convenient.

A conditionally-conjugate prior family for  is inverse gamma, and when
combined with the N(0,1) we have an implied half-t prior for , which is the
absolute value of a Student's t distribution centered at zero.
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HALF T
The half t prior is a function of a scale parameter  and degrees of freedom 

 and can be written

Gelman proposes a half-Cauchy prior (obtained with a large scale parameter 
 and ) as a weakly-informative choice that is desirable at times with a

small number of groups.
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EXAMPLE: HOSPITAL INCOME

Recall the lab data from the Centers for Medicare and Medicaid Services on
hospital costs and profit from the 2014 fiscal year.

Our interest is in examining variability of net income to the hospital across
states.

load("data/hc2014.RData")
#library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
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EXAMPLE: HOSPITAL INCOME

We can fit the model

where  represents the net income of hospital  in state , and  is a
random effect for state.

#library(brms)
m1 <- brm(netincome~ (1|state), data=hc2014, family = gaussian(),
       control = list(adapt_delta = .99),
       prior = c(
         set_prior("normal(0, 10)", class = "Intercept"),
         set_prior("student_t(3, 0, 1)", class = "sd")
       ))
summary(m1)

yij = μ + αj + εij,

yij i j αj
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EXAMPLE: HOSPITAL INCOME
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: netincome ~ (1 | state) 
##    Data: hc2014 (Number of observations: 6170) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~state (Number of levels: 55) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.08      1.17     0.03     3.96 1.00     4543     2110
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.27     10.19   -19.85    20.44 1.00     6248     2648
## 
## Family Specific Parameters: 
##          Estimate Est.Error    l-95% CI    u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 94848367.55 851695.96 93207770.07 96503907.53 1.00     6354     2856
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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EXAMPLE: HOSPITAL INCOME

We can plot the state-specific means with 95% credible intervals:

#library(tidyverse)
#library(tidybayes)
m1 %>%
  spread_draws(b_Intercept, r_state[state,]) %>%
  median_qi(state_mean = b_Intercept + r_state) %>%
  ggplot(aes(y = state, x = state_mean, xmin = .lower, xmax = .upper)) +
  geom_pointinterval(orientation = "horizontal")
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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