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INTRODUCTION

ANOVA, ANCOVA, MANOVA: what is the difference?

ANOVA (Analysis of Variance): continuous outcome, categorical
predictor(s)

one-way ANOVA: one categorical predictor

two-way ANOVA: two categorical predictors

two-way ANOVA with interaction: you get the picture!

ANCOVA (Analysis of Covariance): continuous outcome, categorical
predictor(s), at least one continuous predictor that is generally
considered a "nuisance".

MANOVA (Multivariate ANOVA): multiple continuous outcomes,
categorical predictor(s).

Historically these names had implications regarding the estimation methods
used, but that is no longer always the case.
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MOTIVATING EXAMPLE: NATIONAL EDUCATIONAL

LONGITUDINAL STUDY OF EDUCATION (NELS)
Hoff considers a subset of the NELS data that contains information on math
scores of a random sample of 10th graders selected from a national sample of
685 large urban public schools.

We plot the math scores  of the  students in each school , ranked by
the average score.

yij nj j
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NELS EXAMPLE

load('data/nels.Rdata')
head(nels)

##   school enroll flp public urbanicity hwh   ses mscore
## 1   1011      5   3      1      urban   2 -0.23  52.11
## 2   1011      5   3      1      urban   0  0.69  57.65
## 3   1011      5   3      1      urban   4 -0.68  66.44
## 4   1011      5   3      1      urban   5 -0.89  44.68
## 5   1011      5   3      1      urban   3 -1.28  40.57
## 6   1011      5   3      1      urban   5 -0.93  35.04

str(nels)

## 'data.frame':    12974 obs. of  8 variables:
##  $ school    : Factor w/ 684 levels "1011","1012",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ enroll    : num  5 5 5 5 5 5 5 5 5 5 ...
##  $ flp       : num  3 3 3 3 3 3 3 3 3 3 ...
##  $ public    : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ urbanicity: Factor w/ 3 levels "rural","suburban",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ hwh       : num  2 0 4 5 3 5 1 4 8 2 ...
##  $ ses       : num  -0.23 0.69 -0.68 -0.89 -1.28 -0.93 0.36 -0.24 -1.07 -0.1 ...
##  $ mscore    : num  52.1 57.6 66.4 44.7 40.6 ...
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NELS EXAMPLE

avmscore.schools<-tapply(nels$mscore,nels$school,mean,na.rm=TRUE)
id.schools<-names(avmscore.schools)
m<-length(id.schools)

plot(c(1,m),range(nels$mscore), type="n",ylab="math score", xlab="rank of  school-specific

for(school in id.schools[order( avmscore.schools )[seq(1,length(avmscore.schools),by=1)]])
{
  y<-nels$mscore[nels$school==school]
  x<-rank(avmscore.schools)[ id.schools==school]
  points( rep(x,length(y)), y,pch=16,cex=.6 ) 
  points(x, mean(y),col="blue",pch=16,cex=.8) 
  segments( x,min(y),x,max(y))
}

abline(h=mean(avmscore.schools))
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NELS EXAMPLE
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NELS EXAMPLE

The school-specific averages range from 24 to 69, with 51 the average of
all 685 school averages (weighting each school equally).

The school-specific variances range from 3 to 187 -- quite a wide range!

The school with the highest average only contains 4 observations.
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WHICH SCHOOL IS BEST?

The school with the highest average has a very small sample size .
Do we have strong evidence that the true mean in this school is substantially
larger than that in other schools in the sample?

(nj = 4)
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ANOVA
One approach would be to fit a "standard" ANOVA model:

m1 <- lm(mscore~school,data=nels)
anova(m1)

## Analysis of Variance Table
## 
## Response: mscore
##              Df Sum Sq Mean Sq F value    Pr(>F)
## school      683 342385  501.30  6.8118 < 2.2e-16
## Residuals 12290 904450   73.59

summary(aov(mscore~school,data=nels))

##                Df Sum Sq Mean Sq F value Pr(>F)
## school        683 342385   501.3   6.812 <2e-16
## Residuals   12290 904450    73.6

Here we see clear evidence of heterogeneity in math scores across schools.
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ANOVA RESULTS

library(sjPlot)
plot_model(m1,sort.est=TRUE)
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ANOVA RESULTS

Based on these estimates, we might conclude that the school has higher
performance than some, but not all, schools.
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RANDOM EFFECTS ANOVA
We may then wish to use shrinkage estimation in order to stabilize that and
other estimates for schools in which few students provide data, as we have
done a few times now.

A random effects ANOVA model is given by

where  and .

library(lme4)
m2 <- lmer(mscore~(1|school),data=nels)
summary(m2)
library(sjstats)
icc(m2)

yij = μ + αj + εij,

εij ∼ N(0, σ2) αj ∼ N(0, τ 2)
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RANDOM EFFECTS ANOVA
## Linear mixed model fit by REML ['lmerMod']
## Formula: mscore ~ (1 | school)
##    Data: nels
## 
## REML criterion at convergence: 93914.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8113 -0.6534  0.0094  0.6732  4.7000 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  school   (Intercept) 23.68    4.866   
##  Residual             73.71    8.585   
## Number of obs: 12974, groups:  school, 684
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  50.9390     0.2028   251.2

## # Intraclass Correlation Coefficient
## 
##      Adjusted ICC: 0.243
##   Conditional ICC: 0.243
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RANDOM EFFECTS ANOVA
Here we examine the distribution of random effects.

library(lattice)
dotplot(ranef(m2, condVar=TRUE))
#OR
library(merTools)
plotREsim(REsim(m2,n.sims=100),stat='median',sd=TRUE)
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RANDOM EFFECTS ANOVA
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RANDOM EFFECTS ANOVA
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RANDOM EFFECTS ANOVA
How do we conduct a formal test of heterogeneity in this random effects
setting? Well, this is a bit more complicated than in the fixed effects setting.

In particular, no heterogeneity corresponds to the case in which 
, so saying something about the single

parameter  has implications about the J parameters .

A second problem is that  cannot be , and we wish to test 
, so we're conducting a hypothesis test at the boundary of the parameter
space instead of in the interior (which would be the case for ).

τ 2 = 0 ⟺ α1 = … = αJ = 0
τ 2 αj

τ 2 < 0 H0 : τ 2 = 0

H0 : μ = 0
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RANDOM EFFECTS ANOVA
As shown in Stram and Lee (1994), the approximate asymptotic null
distribution for  using a likelihood ratio test comparing our
model to a model without random effects  in this case is a 50-
50 mixture of a  (point mass on 0) and a  distribution.

In general, if we wish to compare a model with  random effects
(calculated as terms that have a random effect, not the number of groups) to
a nested model with  random effects, the asymptotic null distribution is a
50-50 mixture of  and  distributions.

H0 : τ 2 = 0
(yij = μ + εij)

χ2
0 χ2

1

q + 1

q
χ2

q+1 χ2
q
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RANDOM EFFECTS ANOVA
Letting LR denote twice the difference in maximized log-likelihoods in the
model with and without a single random effect, you can obtain the null
density in R using

and the p-value via

0.5 ∗ (dchisq(x, q + 1) + dchisq(x, q))

0.5 ∗ (1 − pchisq(LR,q+1) + 1 − pchisq(LR, q)).
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RANDOM EFFECTS ANOVA
For the NELS data fit using a frequentist random effects model, we would
calculate this as follows.

m3 <- lmer(mscore~(1|school),data=nels,REML=FALSE) #ML estimation
m4 <- lm(mscore~1,data=nels)
LR <- 2*(logLik(m3)-logLik(m4))
LR

## 'log Lik.' 2137.067 (df=3)

0.5*(1-pchisq(LR[1],1)+1-pchisq(LR[1],0))

## [1] 0

anova(m3,m4)

## Data: nels
## Models:
## m4: mscore ~ 1
## m3: mscore ~ (1 | school)
##    npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)
## m4    2 96054 96069 -48025    96050                     
## m3    3 93919 93942 -46957    93913 2137.1  1  < 2.2e-16

We conclude that there is significant heterogeneity across schools in the
mean math scores.
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BRINGING SES INTO THE MIX

NELS contains a measure of socioeconomic status (SES) for each student.

We generally expect some degree of correlation between SES and math score
(people who are good at math often can get good jobs, and then have kids
who may inherit math talents; rich parents may have more time and
resources to devote to their kids).

Of course the relationship is not deterministic (there are plenty of math
whizzes who did not have rich parents -- Gauss!, and there are plenty of rich
parents who have kids who do not make good math scores -- college
admissions scandal!).
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BRINGING SES INTO THE MIX

Let's look overall at the association between SES and math score in NELS.
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BIG PICTURE

Consider "simulated" data on schools, which we represent using red, green,
and blue points on the plot on the next slide, respectively.

The schools we illustrate include one low SES school, one middle SES school,
and one high SES school.

Let's consider multiple ways in which we could obtain the marginal
association between SES and math score on the previous slide.
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BIG PICTURE
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RANDOM EFFECTS ANCOVA
We want our model to be able to help us understand how SES  and math
scores are related in schools.

In the framework of the model

what values of  are consistent with these figures?

One way to assess how SES is related to math score is to start with an
ANCOVA model, allowing school-specific intercepts while including SES as a
covariate :

In this model, we estimate the same effect of SES for each school.

(xij)

yij = β0,j + β1,jxij + εij,

βj

xij

yij = β0,j + β1xij + εij.
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RANDOM EFFECTS ANCOVA
m5 <- lmer(mscore~ses+(1|school),data=nels)
summary(m5)

## Linear mixed model fit by REML ['lmerMod']
## Formula: mscore ~ ses + (1 | school)
##    Data: nels
## 
## REML criterion at convergence: 92558.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8753 -0.6428  0.0165  0.6693  4.4322 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  school   (Intercept) 12.22    3.495   
##  Residual             68.03    8.248   
## Number of obs: 12974, groups:  school, 684
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  50.7175     0.1542  328.99
## ses           4.3766     0.1123   38.98
## 
## Correlation of Fixed Effects:
##     (Intr)
## ses -0.042

The SES score itself is a summary score and not particularly interesting to
interpret as is.
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RANDOM EFFECTS ANCOVA
We can standardize the variable to get a different kind of interpretation.

nels$sesstd <- nels$ses/sd(nels$ses)
m5 <- lmer(mscore~sesstd+(1|school),data=nels)
summary(m5)

## Linear mixed model fit by REML ['lmerMod']
## Formula: mscore ~ sesstd + (1 | school)
##    Data: nels
## 
## REML criterion at convergence: 92558.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8753 -0.6428  0.0165  0.6693  4.4322 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  school   (Intercept) 12.22    3.495   
##  Residual             68.03    8.248   
## Number of obs: 12974, groups:  school, 684
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  50.7175     0.1542  328.99
## sesstd        3.2900     0.0844   38.98
## 
## Correlation of Fixed Effects:
##        (Intr)
## sesstd -0.042

Pretty big effect of SES -- a 1 SD increase in SES is associated with a 3.3 point
increase in math score on average.
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RANDOM EFFECTS ANCOVA
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RANDOM EFFECTS ANCOVA
plot_model(m5,type='re')

29 / 33



RANDOM EFFECTS ANCOVA
Let's plot the estimated school-specific lines from the random intercept
model.

xplot=seq(-2.9,2.3,by=.1)
yplot=rep(60,length(xplot))
plot(xplot,yplot,type="n",ylim=c(30,70),xlab="Standardized SES",ylab="Math Score")
for(school in 1:length(id.schools))
{
  yplot=coef(m5)$school[school,1]+coef(m5)$school[school,2]*xplot
  lines(xplot,yplot)
}
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RANDOM EFFECTS ANCOVA
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RANDOM EFFECTS ANCOVA
This model allows separate intercepts for each school but assumes a common
slope.

One concern is whether SES has the same relationship with math scores in all
schools.

For example, some schools may have less of a disparity in scores across levels
of SES than others.

We can try random slopes of SES as discussed earlier and test the two nested
models.

We will revisit this in the next module.
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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