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LINEAR MODEL ESTIMATES

Consider a very simple one-sample linear model given by , 
.

In matrix notation, this model can be written as

with the vector .

yi = μ + εi
εi ∼ N(0,σ2)
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ε ∼ N(0n×1,σ2In×n)
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MLES

Recalling that the normal distribution for one observation is given by

We can obtain the likelihood by taking the product over all  independent
observations:

To find the MLE solve for the parameter values that make the first derivative
equal to 0 (often we work with the log-likelihood as it is more convenient).
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https://www.mathsisfun.com/calculus/maxima-minima.html


MLES

The log-likelihood is given by
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MLES

To find the MLE of , take the derivative

Setting this equal to zero, we obtain the MLE
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MLES

To find the MLE of  take the derivative

Setting to 0 and solving for the MLE, using the MLE of  we just found, we
obtain

Note this MLE of  is not the usual (unbiased) sample variance . We will
return to this point later in the course.
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PROPERTIES OF MLES

For any MLE ,

 as  (if the model is correct)

, where  is the Fisher information.

Alternatively, , where  in

large samples

For the hierarchical model, this gives us a method for getting approximate 
 confidence intervals for mean parameters (and functions of them).

However, since the variance itself actually includes the unknown parameter,
we would have to rely on an estimated version.

θ̂

θ̂ → θ n → ∞

θ̂ ∼ N (θ, I
−1)1

n
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θ̂ ∼ N (θ, Var(θ̂)) Var(θ̂) ≈ [ ]
−1d2l(θ∣y)

dθ2

95%
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INFORMATION

The observed information matrix is the matrix of second derivatives of the
negative log-likelihood function at the MLE (Hessian matrix):

The inverse of the information matrix gives us an estimate of the
variance/covariance of MLE's:

The square roots of the diagonal elements of this matrix give approximate
SE's for the coefficients, and the MLE  2 SE gives a rough  confidence
interval for the parameters.

J(θ̂) = {− } |θ=θ̂

∂2ℓ(θ ∣ y)
∂θj∂θk

V̂ar(θ̂) ≈ J−1(θ̂)

± 95%
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MOTIVATING EXAMPLE: CYCLING SAFETY

In the cycling safety study, after we found evidence that the rider's distance
from the curb was related to passing distance (the overall F test), we wanted
to learn what kind of relationship existed (pairwise comparisons).

Each pairwise comparison is defined by a linear combination of the
parameters in our model.

Consider the treatment means model .

We are interested in which .

yij = μj + εij

μj ≠ μ′
j
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DISTRIBUTION OF LEAST SQUARES ESTIMATES

Recall in the linear model, the least squares estimate .

Its covariance is given by .

In large samples, or when our errors are exactly normal, 
.

β̂ = (X ′X)−1X ′y

Cov(β̂) = σ2(X ′X)−1

β̂ ∼ N (β,σ2(X ′X)−1)

10 / 14



LINEAR COMBINATIONS

In order to test whether the means in group 1 and 2 are the same, we need to
test a hypothesis about a linear combination of parameters.

The quantity  is a linear combination. It is called a contrast if 

.

Using matrix notation, we often express a hypothesis regarding a linear
combination of regression coefficients as

where often .

∑j ajμj

∑j aj = 0

H0 :     θ = Cβ = θ0

Ha :     θ = Cβ ≠ θ0,

θ0 = 0
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LINEAR COMBINATIONS

For example, suppose we have three groups in the model  and
want to test differences in all pairwise comparisons. We can set

,

, and

,

so that our hypothesis is that .
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DISTRIBUTIONAL RESULTS FOR LINEAR

COMBINATIONS

Using basic properties of the multivariate normal distribution, we have

Using this result, you can derive the standard error for any linear combination
of parameter estimates, which can be used in constructing confidence
intervals.

You could also fit a reduced model subject to the constraint you wish to test
(e.g., same mean for groups 1 and 2), and then use either a partial F test or a
likelihood-ratio test (F is special case of LRT) to evaluate the hypothesis that
the reduced model is adequate.

We will implement this later in R.

Cβ̂ ∼ N (Cβ,σ2C(X ′X)−1C ′) .
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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