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INTRODUCTION

Bayesian estimation is often the approach of choice for fitting hierarchical
models.

Two major advantages include

estimation and computation, particularly in complex, highly structured,
or generalized linear models; and

straightforward uncertainty quantification.
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HIERARCHICAL NORMAL MODEL

Recall our data model:

where

, and

,

so that .

In addition to this data model, we will also need to specify a prior
distribution for , which we will write as .

Note: this module should be a recap of the derivations you should have
covered in STA 360/601/602. Some of the notations might be different so pay
attention to those.

yij = μj + εij

μj = μ + αj

αj
iid
∼ N (0, τ 2) ⊥ εij

iid
∼ N (0,σ2)

μj
iid
∼ N (μ, τ 2)

(μ, τ 2,σ2) p(θ) = p(μ, τ 2,σ2)
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BAYESIAN SPECIFICATION OF THE MODEL

We will start with a default semi-conjugate prior specification given by

where

p(μ, τ 2,σ2) = p(μ)p(τ 2)p(σ2),

π(μ) = N (μ0, γ2
0)

π(τ 2) = IG( , )

π(σ2) = IG( , ) .
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BAYESIAN SPECIFICATION OF THE MODEL

With this default prior specification, we have nice interpretations of the prior
parameters.

For ,

: best guess of average of group averages

: set based on plausible ranges of values of 

For ,

: best guess of variance of group averages

: set based on how tight prior for  is around 

For ,

: best guess of variance of individual responses around respective
group means

: set based on how tight prior for  is around .

μ

μ0

γ2
0 μ

τ 2

τ 2
0

η0 τ 2 τ 2
0

σ2

σ2
0

ν0 σ2 σ2
0
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QUICK REVIEW: INVERSE-GAMMA DISTRIBUTION

If , then the pdf is

with

;

.;

.

θ ∼ IG(a, b)

p(θ) = θ−(a+1)e−    for   a, b > 0,
ba

Γ(a)

b

θ

E[θ] = b
a−1

V[θ] =   for  a ≥ 2b2

(a−1)2(a−2)

Mode[θ] = b
a+1
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IMPLICATIONS ON PRIORS

Using an  distribution for , we can now see that  is

somewhere in the "center" of the distribution (between the mode  and

the mean ).

As the "prior sample size"  increases, the difference between these
quantities goes to 0.

We have similar implications on the prior .

IG( , )
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FULLY-SPECIFIED MODEL

We have now fully-specified our model with the following components.

1. Unknown parameters 

2. Prior distributions, specified in terms of prior guesses  and

certainty/prior sample sizes 

3. Data from our groups.

We can then interrogate the posterior distribution of the parameters using
Gibbs sampling, as the full conditional distributions have closed forms.

(μ0, τ 2
0 ,σ2

0 ,μ1, ⋯ ,μJ)

(μ0, τ 2
0 ,σ2

0)

(γ2
0 , η0, ν0)
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FULL CONDITIONALS

For the full conditionals we will derive here, we will take advantage of
results from the regular univariate normal model (from STA
360/601/602). For a refresher, see here.

Recall that if we assume

and set our priors to be

then we have

yi ∼ N (μ,σ2),   i = 1, … ,n,

π(μ) = N (μ0, γ2
0) .

π(σ2) = IG( , ) ,
ν0

2

ν0σ
2
0

2

π(μ,σ2|Y ) ∝ {
n

∏
i=1

p(yi|μ,σ2)} ⋅ π(μ) ⋅ π(σ2)
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FULL CONDITIONALS

We have

where

and

where

π(μ|σ2,Y ) = N (μn, γ2
n) .

γ2
n = ;         μn = γ2

n [ ȳ + μ0] ,
1

+
n

σ2

1

γ2
0

n

σ2

1

γ2
0

π(σ2|μ,Y ) = IG( , ) ,
νn

2

νnσ
2
n

2

νn = ν0 + n;        σ2
n = [ν0σ

2
0 +

n

∑
i=1

(yi − μ)2] .
1

νn
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POSTERIOR INFERENCE

Our hierarchical model can be written as

Under our prior specification, we can factor the posterior as follows:

yij|μj,σ
2 ∼ N (μj,σ

2) ;    i = 1, … ,nj

μj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,

π(μ1, … ,μJ ,μ,σ2, τ 2|Y ) ∝ p(y|μ1, … ,μJ ,μ,σ2, τ 2)

     × p(μ1, … ,μJ |μ,σ2, τ 2)

     × π(μ,σ2, τ 2)

= p(y|μ1, … ,μJ ,σ2)

     × p(μ1, … ,μJ |μ, τ 2)

     × π(μ) ⋅ π(σ2) ⋅ π(τ 2)

= {
J

∏
j=1

nj

∏
i=1

p(yij|μj,σ
2)}

     ×{
J

∏
j=1

p(μj|μ, τ 2)}

     × π(μ) ⋅ π(σ2) ⋅ π(τ 2)
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FULL CONDITIONAL FOR GRAND MEAN

The full conditional distribution of  is proportional to the part of the
joint posterior  that involves .

That is,

This looks like the full conditional distribution from the one-sample
normal case, so you can show that

and .

μ
π(μ1, … ,μJ ,μ,σ2, τ 2|Y ) μ

π(μ|μ1, … ,μJ ,σ2, τ 2,Y ) ∝ {
J

∏
j=1

p(μj|μ, τ 2)} ⋅ π(μ).

π(μ|μ1, … ,μJ ,σ2, τ 2,Y ) = N (μn, γ2
n)     where

γ2
n = ;         μn = γ2

n [ θ̄ + μ0]
1

+
J

τ 2

1

γ2
0

J

τ 2

1

γ2
0

θ̄ =
J

∑
j=1

μj
1
J
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FULL CONDITIONALS FOR GROUP MEANS

Similarly, the full conditional distribution of each  is proportional to
the part of the joint posterior  that involves 

.

That is,

Those terms include a normal for  multiplied by a product of normals in
which  is the mean, again mirroring the one-sample case, so you can
show that

μj

π(μ1, … ,μJ ,μ,σ2, τ 2|Y )
μj

π(μj|μ,σ2, τ 2,Y ) ∝ {
nj

∏
i=1

p(yij|μj,σ
2)} ⋅ p(μj|μ, τ 2)

μj

μj

π(μj|μ,σ2, τ 2,Y ) = N (μ⋆
j , ν

⋆
j )     where

ν⋆
j = ;        μ⋆

j = ν⋆
j [ ȳ j + μ]

1

+
nj

σ2

1

τ 2

nj

σ2

1

τ 2
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FULL CONDITIONALS FOR GROUP MEANS

Our estimate for each  is a weighted average of  and , ensuring

that we are borrowing information across all levels through  and .

The weights for the weighted average is determined by relative
precisions from the data and from the second level model.

The groups with smaller  have estimated  closer to  than schools

with larger .

Thus, degree of shrinkage of  depends on ratio of within-group to
between-group variances.

μj ȳ j μ

μ τ 2

nj μ⋆
j μ

nj

μj
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FULL CONDITIONALS FOR ACROSS-GROUP

VARIANCE

The full conditional distribution of  is proportional to the part of the
joint posterior  that involves .

That is,

As in the case for , this looks like the one-sample normal problem, and
our full conditional posterior is

τ 2

π(μ1, … ,μJ ,μ,σ2, τ 2|Y ) τ 2

π(τ 2|μ1, … ,μJ ,μ,σ2,Y ) ∝ {
J

∏
j=1

p(μj|μ, τ 2)} ⋅ π(τ 2)

μ

π(τ 2|μ1, … ,μJ ,μ,σ2,Y ) = IG( , )     where

ηn = η0 + J;        τ 2
n = [η0τ

2
0 +

J

∑
j=1

(μj − μ)2] .

ηn

2

ηnτ
2
n

2

1

ηn
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FULL CONDITIONALS FOR WITHIN-GROUP

VARIANCE

Finally, the full conditional distribution of  is proportional to the part
of the joint posterior  that involves .

That is,

We can again take advantage of the one-sample normal problem, so that
our full conditional posterior (homework) is

σ2

π(μ1, … ,μJ ,μ,σ2, τ 2|Y ) σ2

π(σ2|μ1, … ,μJ ,μ, τ 2,Y ) ∝ {
J

∏
j=1

nj

∏
i=1

p(yij|μj,σ
2)} ⋅ π(σ2)

π(σ2|μ1, … ,μJ ,μ, τ 2,Y ) = IG( , )     where

νn = ν0 +
J

∑
j=1

nj;        σ2
n = [ν0σ

2
0 +

J

∑
j=1

nj

∑
i=1

(yij − μj)
2] .

νn
2

νnσ
2
n

2

1

νn
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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