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GENERALIZED LINEAR MIXED EFFECTS MODEL

(GLMM)
As we continue to generalize the concepts we have covered, let's think about
the incorporation of random effects into the standard representation of
generalized linear models.

The basic idea is that we assume there is natural heterogeneity across groups
in a subset of the regression coefficients.

These coefficients are assumed to vary across groups according to some
distribution.

Conditional on the random effects, we then assume the responses for a single
subject are independent observations from a distribution in the exponential
family.
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GLMM
Note: when we look at longitudinal data, we will group by , otherwise, we
will group by .

In the generalized linear mixed effects model (GLMM) for longitudinal data,
we assume the conditional distribution of each , conditional on ,
belongs to the exponential family with conditional mean

where  is a known link function.

Assume the  are independent across subjects with .

We also assume that given , the responses  are mutually
independent.

i
j

Yij bi

g(E[Yij ∣ bi]) = X′
ijβ + Z′

ijbi,

g(⋅)

bi bi ∼ N(0, D)

bi Yi1, … ,Yin
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EXAMPLE: MULTILEVEL LINEAR REGRESSION

where

and

Yij = X′
ijβ + bi + εij,

bi
iid
∼ N(0,σ2

b
) ⊥ εij

iid
∼ N(0,σ2

e )

E(Yij ∣ bi) = X′
ijβ + bi
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EXAMPLE: MULTILEVEL LOGISTIC MODEL WITH

RANDOM INTERCEPTS

where

Question: what happened to ?

logit(E(Yij ∣ bi)) = X′
ijβ + bi,

bi ∼ N(0,σ2)

εij
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EXAMPLE: RANDOM COEFFICIENTS POISSON

REGRESSION

If we set

that is, we have random slopes and intercepts, then we can assume

log(E(Yij ∣ bi)) = X′
ijβ + Z′

ijbi.

Xij = Zij = [1, tij],

bi ∼ N(0, D).
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INTERPRETATION OF GLMM ESTIMATES

In the model

with , each element of  measures the change in the log odds
of a 'positive' response per unit change in the respective covariate, in a
specific group that has an underlying propensity to respond positively given
by .

That is, we need to hold the group membership constant when interpreting 
, just as we would hold the values of  constant when interpreting 

logit(E[Yij ∣ bi]) = X′
ijβ + bi,

bi ∼ N(0,σ2) β

bi

βk xi,(−k)

βk
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CAUTION

Note also that with a non-linear link function, a non-linear contrast of the
averages is not equal to the average of non-linear contrasts, so that the
parameters do not in general have population-average interpretations (as
they would in a linear mixed effects model, which has identity link).

So while in the lmm

so that , when  is non-linear (say the logit), then

for all  when averaged over the distribution of the random effects.

g(E(Yij ∣ Xij, bi)) = X′
ijβ + Z′

ijbi

E(Yij ∣ Xij) = X′
ijβ g(⋅)

g(E(Yij ∣ Xij)) ≠ X′
ijβ

β
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INTRACLASS CORRELATION

Let's focus on binary response for the rest of this module. That is, each 
.

Now consider an unobserved continuous variable .

 is related to  in the following manner:  if , and 
 otherwise.

The location of  and the distribution of  govern the probability that 
.

Yij ∈ {0, 1}

Wij

Wij Yij Yij = 1 Wij < c

Yij = 0

c W
Y = 1
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INTRACLASS CORRELATION

Useful way of thinking about model but not an essential assumption:

: probit regression

 standard logistic (mean 0, variance ): logistic regression

We can use this framework to calculate ICC's:

Wij = X′
ijβ + bi + εij

εij ∼ N(0, 1)

εij ∼ π2

3

ICC =    for probitσ2

σ2+1

ICC =    for logisticσ2

σ2+ π2

3
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ESTIMATION USING ML
The joint probability density function is given by

However, recall that the  are unobserved.

How then do we handle the  in the maximization?

Typically, we base frequentist inferences on the marginal (integrated)
likelihood function, given by

Estimation using maximum likelihood then involves a two-step procedure.

f(Yi ∣ Xi, bi)f(bi).

bi

bi

N

∏
i=1

∫ f(Yi ∣ Xi, bi)f(bi)dbi.
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ML ESTIMATION STEPS

Step 1: Obtain ML estimates of  and  based on the marginal likelihood of
the data.

While this may sound simple, numerical or Monte Carlo integration techniques
are typically required, and the techniques used may have substantial impacts
on resulting inferences.

Step 2: Given estimates of  and , predict the random effects as

Again, simple analytic solutions are rarely available.

Even when the burden of integration is not that great, the optimization
problem may be difficult to solve.

β D

β D

b̂i = E(bi ∣ Yi, β̂, D̂).
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RANDOM EFFECTS LOGISTIC REGRESSION

Inverse logit functions for random intercepts logistic model with a single
predictor.
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RANDOM EFFECTS LOGISTIC REGRESSION

Inverse logit functions for random slopes logistic model with a single
predictor.
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RANDOM EFFECTS LOGISTIC REGRESSION

Inverse logit functions for random intercepts and random slopes logistic
model with a single predictor.
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1988 ELECTIONS ANALYSIS

To illustrate how to fit and interpret the results of random effect logistic
models, we will use a sample data on election polls.

National opinion polls are conducted by a variety of organizations (e.g.,
media, polling organizations, campaigns) leading up to elections.

While many of the best opinion polls are conducted at a national level, it can
also be often interesting to estimate voting opinions and preferences at the
state or even local level.

Well-designed polls are generally based on national random samples with
corrections for nonresponse based on a variety of demographic factors (e.g.,
sex, ethnicity, race, age, education).

The data is from CBS News surveys conducted during the week before the
1988 election.

Respondents were asked about their preferences for either the Republican
candidate (Bush Sr.) or the Democratic candidate (Dukakis).

16 / 33



1988 ELECTIONS ANALYSIS

The dataset includes 2193 observations from one of eight surveys (the most
recent CBS News survey right before the election) in the original full data.

Variable Description

org cbsnyt = CBS/NYT

bush 1 = preference for Bush Sr., 0 = otherwise

state 1-51: 50 states including DC (number 9)

edu education: 1=No HS, 2=HS, 3=Some College, 4=College Grad

age 1=18-29, 2=30-44, 3=45-64, 4=65+

female 1=female, 0=male

black 1=black, 0=otherwise

region 1=NE, 2=S, 3=N, 4=W, 5=DC

v_prev average Republican vote share in the three previous elections (adjusted for home-state and home-
region effects in the previous elections)

Given that the data has a natural multilevel structure (through state and
region), it makes sense to explore hierarchical models for this data.
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1988 ELECTIONS ANALYSIS

Both voting turnout and preferences often depend on a complex combination
of demographic factors.

In our example dataset, we have demographic factors such as biological sex,
race, age, education, which we may all want to look at by state, resulting in 

 potential categories of respondents.

We may even want to control for region, adding to the number of categories.

Clearly, without a very large survey (most political survey poll around 1000
people), we will need to make assumptions in order to even obtain estimates
in each category.

We usually cannot include all interactions; we should therefore select those
to explore (through EDA and background knowledge).

The data is in the file polls_subset.txt on Sakai.

2 × 2 × 4 × 4 × 51 = 3264
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1988 ELECTIONS ANALYSIS

###### Load the data
polls_subset <- read.table("data/polls_subset.txt",header=TRUE)
str(polls_subset)

## 'data.frame':    2193 obs. of  10 variables:
##  $ org   : chr  "cbsnyt" "cbsnyt" "cbsnyt" "cbsnyt" ...
##  $ survey: int  9158 9158 9158 9158 9158 9158 9158 9158 9158 9158 ...
##  $ bush  : int  NA 1 0 0 1 1 1 1 0 0 ...
##  $ state : int  7 39 31 7 33 33 39 20 33 40 ...
##  $ edu   : int  3 4 2 3 2 4 2 2 4 1 ...
##  $ age   : int  1 2 4 1 2 4 2 4 3 3 ...
##  $ female: int  1 1 1 1 1 1 0 1 0 0 ...
##  $ black : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ region: int  1 1 1 1 1 1 1 1 1 1 ...
##  $ v_prev: num  0.567 0.527 0.564 0.567 0.524 ...

head(polls_subset)

##      org survey bush state edu age female black region    v_prev
## 1 cbsnyt   9158   NA     7   3   1      1     0      1 0.5666333
## 2 cbsnyt   9158    1    39   4   2      1     0      1 0.5265667
## 3 cbsnyt   9158    0    31   2   4      1     0      1 0.5641667
## 4 cbsnyt   9158    0     7   3   1      1     0      1 0.5666333
## 5 cbsnyt   9158    1    33   2   2      1     0      1 0.5243666
## 6 cbsnyt   9158    1    33   4   4      1     0      1 0.5243666
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1988 ELECTIONS ANALYSIS

summary(polls_subset)

##      org                survey          bush            state      
##  Length:2193        Min.   :9158   Min.   :0.0000   Min.   : 1.00  
##  Class :character   1st Qu.:9158   1st Qu.:0.0000   1st Qu.:14.00  
##  Mode  :character   Median :9158   Median :1.0000   Median :26.00  
##                     Mean   :9158   Mean   :0.5578   Mean   :26.11  
##                     3rd Qu.:9158   3rd Qu.:1.0000   3rd Qu.:39.00  
##                     Max.   :9158   Max.   :1.0000   Max.   :51.00  
##                                    NA's   :178                     
##       edu             age            female           black        
##  Min.   :1.000   Min.   :1.000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :2.000   Median :2.000   Median :1.0000   Median :0.00000  
##  Mean   :2.653   Mean   :2.289   Mean   :0.5887   Mean   :0.07615  
##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:1.0000   3rd Qu.:0.00000  
##  Max.   :4.000   Max.   :4.000   Max.   :1.0000   Max.   :1.00000  
##                                                                    
##      region          v_prev      
##  Min.   :1.000   Min.   :0.1530  
##  1st Qu.:2.000   1st Qu.:0.5278  
##  Median :2.000   Median :0.5481  
##  Mean   :2.431   Mean   :0.5550  
##  3rd Qu.:3.000   3rd Qu.:0.5830  
##  Max.   :5.000   Max.   :0.6927  
##
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1988 ELECTIONS ANALYSIS

polls_subset$v_prev <- polls_subset$v_prev*100 #rescale 
polls_subset$region_label <- factor(polls_subset$region,levels=1:5,
                                    labels=c("NE","S","N","W","DC"))
#we consider DC as a separate region due to its distinctive voting patterns
polls_subset$edu_label <- factor(polls_subset$edu,levels=1:4,
                                 labels=c("No HS","HS","Some College","College Grad"))
polls_subset$age_label <- factor(polls_subset$age,levels=1:4,
                                 labels=c("18-29","30-44","45-64","65+"))
#the data includes states but without the names, which we will need, 
#so let's grab that from R datasets
data(state) 
#"state" is an R data file (type ?state from the R command window for info)
state.abb #does not include DC, so we will create ours

##  [1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "FL" "GA" "HI" "ID" "IL" "IN" "IA"
## [16] "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH" "NJ"
## [31] "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT" "VT"
## [46] "VA" "WA" "WV" "WI" "WY"

#In the polls data, DC is the 9th "state" in alphabetical order
state_abbr <- c (state.abb[1:8], "DC", state.abb[9:50])
polls_subset$state_label <- factor(polls_subset$state,levels=1:51,labels=state_abbr)
rm(list = ls(pattern = "state")) #remove unnecessary values in the environment
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1988 ELECTIONS ANALYSIS

###### View properties of the data  
head(polls_subset)

##      org survey bush state edu age female black region   v_prev region_label
## 1 cbsnyt   9158   NA     7   3   1      1     0      1 56.66333           NE
## 2 cbsnyt   9158    1    39   4   2      1     0      1 52.65667           NE
## 3 cbsnyt   9158    0    31   2   4      1     0      1 56.41667           NE
## 4 cbsnyt   9158    0     7   3   1      1     0      1 56.66333           NE
## 5 cbsnyt   9158    1    33   2   2      1     0      1 52.43666           NE
## 6 cbsnyt   9158    1    33   4   4      1     0      1 52.43666           NE
##      edu_label age_label state_label
## 1 Some College     18-29          CT
## 2 College Grad     30-44          PA
## 3           HS       65+          NJ
## 4 Some College     18-29          CT
## 5           HS     30-44          NY
## 6 College Grad       65+          NY

dim(polls_subset)

## [1] 2193   14
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1988 ELECTIONS ANALYSIS

###### View properties of the data  
str(polls_subset)

## 'data.frame':    2193 obs. of  14 variables:
##  $ org         : chr  "cbsnyt" "cbsnyt" "cbsnyt" "cbsnyt" ...
##  $ survey      : int  9158 9158 9158 9158 9158 9158 9158 9158 9158 9158 ...
##  $ bush        : int  NA 1 0 0 1 1 1 1 0 0 ...
##  $ state       : int  7 39 31 7 33 33 39 20 33 40 ...
##  $ edu         : int  3 4 2 3 2 4 2 2 4 1 ...
##  $ age         : int  1 2 4 1 2 4 2 4 3 3 ...
##  $ female      : int  1 1 1 1 1 1 0 1 0 0 ...
##  $ black       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ region      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ v_prev      : num  56.7 52.7 56.4 56.7 52.4 ...
##  $ region_label: Factor w/ 5 levels "NE","S","N","W",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ edu_label   : Factor w/ 4 levels "No HS","HS","Some College",..: 3 4 2 3 2 4 2 2 4 1 ...
##  $ age_label   : Factor w/ 4 levels "18-29","30-44",..: 1 2 4 1 2 4 2 4 3 3 ...
##  $ state_label : Factor w/ 51 levels "AL","AK","AZ",..: 7 39 31 7 33 33 39 20 33 40 ...
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1988 ELECTIONS ANALYSIS

I will not do any meaningful EDA here.

I expect you to be able to do this yourself.

Let's just take a look at the amount of data we have for "bush" and the
age:edu interaction.

###### Exploratory data analysis
table(polls_subset$bush) #well split by the two values

## 
##    0    1 
##  891 1124

table(polls_subset$edu,polls_subset$age)

##    
##       1   2   3   4
##   1  44  42  67  96
##   2 232 283 223 116
##   3 141 205  99  54
##   4 119 285 125  62

24 / 33



1988 ELECTIONS ANALYSIS

As a start, we will consider a simple model with fixed effects of race and sex
and a random effect for state (50 states + the District of Columbia).

In R, we have

#library(lme4)
model1 <- glmer(bush ~ black+female+(1|state_label),
                family=binomial(link="logit"),
                data=polls_subset)
summary(model1)

bushij|xij ∼ Bernoulli(πij);    i = 1, … ,n;    j = 1, … , J = 51;

log( ) = β0 + b0j + β1femaleij + β2blackij;

b0j ∼ N(0,σ2).

πij

1 − πij
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1988 ELECTIONS ANALYSIS
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: bush ~ black + female + (1 | state_label)
##    Data: polls_subset
## 
##      AIC      BIC   logLik deviance df.resid 
##   2666.7   2689.1  -1329.3   2658.7     2011 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7276 -1.0871  0.6673  0.8422  2.5271 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  state_label (Intercept) 0.1692   0.4113  
## Number of obs: 2015, groups:  state_label, 49
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.44523    0.10139   4.391 1.13e-05
## black       -1.74161    0.20954  -8.312  < 2e-16
## female      -0.09705    0.09511  -1.020    0.308
## 
## Correlation of Fixed Effects:
##        (Intr) black 
## black  -0.119       
## female -0.551 -0.005
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1988 ELECTIONS ANALYSIS

Looks like we dropped some NAs.

c(sum(complete.cases(polls_subset)),sum(!complete.cases(polls_subset)))

## [1] 2015  178

Not ideal; we'll learn about methods for dealing with missing data soon.

Interpretation of results:

For a fixed state (or across all states), a non-black male respondent has
odds of  of supporting Bush.

For a fixed state and sex, a black respondent as  times (an
82% decrease) the odds of supporting Bush as a non-black respondent;
you are much less likely to support Bush if your race is black compared to
being non-black.

For a given state and race, a female respondent has  (a 9%
decrease) times the odds of supporting Bush as a male respondent.
However, this effect is not actually statistically significant!

e0.45 = 1.57

e−1.74 = 0.18

e−0.10 = 0.91

27 / 33



1988 ELECTIONS ANALYSIS

The state-level standard deviation is estimated at 0.41, so that the states do
vary some, but not so much.

I expect that you will be able to interpret the corresponding confidence
intervals.

## Computing profile confidence intervals ...

##                  2.5 %      97.5 %
## .sig01       0.2608567  0.60403428
## (Intercept)  0.2452467  0.64871247
## black       -2.1666001 -1.34322366
## female      -0.2837100  0.08919986

28 / 33



1988 ELECTIONS ANALYSIS

We can definitely fit a more sophisticated model that includes other relevant
survey factors, such as

region

prior vote history (note that this is a state-level predictor),

age, education, and the interaction between them.

Given the structure of the data, it makes sense to include region as a second
(nested) grouping variable.

We are yet to discuss that, so I will return to this later.
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1988 ELECTIONS ANALYSIS

For now, let's just fit two models, one with the main effects for age and
education, and the second with the interaction between them.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: bush ~ black + female + edu_label + age_label + (1 | state_label)
##    Data: polls_subset
## 
##      AIC      BIC   logLik deviance df.resid 
##   2662.2   2718.3  -1321.1   2642.2     2005 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8921 -1.0606  0.6420  0.8368  2.7906 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  state_label (Intercept) 0.1738   0.4168  
## Number of obs: 2015, groups:  state_label, 49
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)            0.31206    0.19438   1.605  0.10841
## black                 -1.74378    0.21124  -8.255  < 2e-16
## female                -0.09681    0.09593  -1.009  0.31289
## edu_labelHS            0.23282    0.16569   1.405  0.15998
## edu_labelSome College  0.51598    0.17921   2.879  0.00399
## edu_labelCollege Grad  0.31585    0.17454   1.810  0.07036
## age_label30-44        -0.29222    0.12352  -2.366  0.01800
## age_label45-64        -0.06744    0.13738  -0.491  0.62352
## age_label65+          -0.22509    0.16142  -1.394  0.16318

Can you interpret the results?
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1988 ELECTIONS ANALYSIS

model3 <- glmer(bush ~ black + female + edu_label*age_label + (1|state_label),
                family=binomial(link="logit"),data=polls_subset)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00802313 (tol = 0.002, component 1)

Why do we have a rank deficient model? Also, it looks like we have a
convergence issue.

These issues can happen. We have so many parameters to estimate from the
interaction terms edu_label*age_label (16 actually), and it looks like that's
causing a problem.
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NOTE ON ESTIMATION

ML estimation is carried out typically using adaptive Gaussian quadrature.

To improve accuracy over many package defaults (Laplace approximation),
increase the number of quadrature points to be greater than one.

Note that some software packages require Laplace approximation with
Gaussian quadrature if the number of random effects is more than 1 for the
sake of computational efficiency.
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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