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CATEGORICAL DATA (UNIVARIATE)
Suppose

;

 for each ; and

.

Then the pmf of  is

We say  has a multinomial distribution with sample size 1, or a
categorical distribution.

Write as  or .

Clearly, this is just an extension of the Bernoulli distribution.

Y ∈ {1, … ,D}

Pr(y = d) = θd d = 1, … ,D

θ = (θ1, … , θD)

Y

Pr[y = d|θ] =
D

∏
d=1

θ
1[y=d]
d

.

Y

Y |θ ∼ Multinomial(1, θ) Y |θ ∼ Categorical(θ)
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DIRICHLET DISTRIBUTION

Since the elements of the probability vector  must always sum to one,
that is, its support is the  simplex.

A conjugate prior for categorical/multinomial data is the Dirichlet
distribution.

A random variable  has a Dirichlet distribution with parameter , if

where , and

We write this as .

The Dirichlet distribution is a multivariate generalization of the beta
distribution.

θ
D − 1

θ α

p[θ|α] =
D

∏
d=1

θαd−1
d

,    αd > 0  for all  d = 1, … ,D.
Γ(∑D

d=1 αd)

∏
D

d=1 Γ(αd)

α = (α1, … ,αD)

D

∑
d=1

θd = 1,   θd ≥ 0  for all  d = 1, … ,D.

θ ∼ Dirichlet(α) = Dirichlet(α1, … ,αD)
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DIRICHLET DISTRIBUTION

Write

Then we can re-write the pdf as

Properties:

α0 =
D

∑
d=1

αd   and   α⋆
d

= .
αd

α0

p[θ|α] =
D

∏
d=1

θ
αd−1
d

,    αd > 0  for all  d = 1, … ,D.
Γ (α0)

∏
D
d=1 Γ(αd)

E[θd] = α⋆
d
;

Mode[θd] = ;
αd − 1

α0 − d

Var[θd] = = ;
α⋆
d
(1 − α⋆

d
)

α0 + 1

E[θd](1 − E[θd])

α0 + 1

Cov[θd, θk] = = .
α⋆
d
α⋆
k

α0 + 1

E[θd]E[θk]

α0 + 1
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DIRICHLET EXAMPLES

Dirichlet(1, 1, 1)
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DIRICHLET EXAMPLES

Dirichlet(10, 10, 10)
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DIRICHLET EXAMPLES

Dirichlet(100, 100, 100)
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DIRICHLET EXAMPLES

Dirichlet(1, 10, 1)
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DIRICHLET EXAMPLES

Dirichlet(50, 100, 10)
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LIKELIHOOD

Let .

Recall

Then,

where  is just the number of individuals in category .

Maximum likelihood estimate of  is

Yi, … ,Yn|θ ∼ Categorical(θ)

Pr[yi = d|θ] =
D

∏
d=1

θ
1[yi=d]
d

.

p[Y |θ] = p[y1, … , yn|θ] =
n

∏
i=1

D

∏
d=1

θ
1[yi=d]
d

=
D

∏
d=1

θ
∑

n
i=1 1[yi=d]

d
=

D

∏
d=1

θnd

d

nd d

θd

θ̂d = ,   d = 1, … ,D
nd

n
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POSTERIOR

Set .

Posterior expectation:

We can also extend the Dirichlet-multinomial model to more variables
(contingency tables).

First, what if our data actually comes from  different sub-populations
of groups of people?

π(θ) = Dirichlet(α1, … ,αD)

π(θ|Y ) ∝ p[Y |θ] ⋅ π[θ]

∝
D

∏
d=1

θnd

d

D

∏
d=1

θαd−1
d

∝
D

∏
d=1

θαd+nd−1
d

= Dirichlet(α1 + n1, … ,αD + nD)

E[θd|Y ] = .
αd + nd

∑
D

d⋆=1(αd⋆ + nd⋆)

K
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FINITE MIXTURE OF MULTINOMIALS

For example, if our data comes from men and women, and we don't
expect marginal independence across the two groups (vote turnout,
income, etc), then we have a mixture of distributions.

With our data coming from a "combination" or "mixture" of sub-
populations, we no longer have independence across all observations, so

that the likelihood .

However, we can still have "conditional independence" within each
group.

Unfortunately, we do not always know the indexes for those groups.

That is, we know our data contains  different groups, but we actually
do not know which observations belong to which groups.

Solution: introduce a latent variable  representing the group/cluster
indicator for each observation , so that each .

p[Y |θ] ≠
n

∏
i=1

D

∏
d=1

θ
1[yi=d]

j

K

zi
i zi ∈ {1, … ,K}
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FINITE MIXTURE OF MULTINOMIALS

Given the cluster indicator  for observation , write

, and

.

Then, the marginal probabilities we care about will be

which is a finite mixture of multinomials, with the weights given by .

zi i

Pr(yi = d|zi) = ψzi,d ≡
D

∏
d=1

ψ
1[yi=d|zi]

zi,d

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]

k

θd = Pr(yi = d)

=
K

∑
k=1

Pr(yi = d|zi = k) ⋅ Pr(zi = k)

=
K

∑
k=1

λk ⋅ ψk,d,

λk
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POSTERIOR INFERENCE

Write

, and

 to be a  matrix of probabilities, where each th
row is the vector of probabilities for cluster .

The observed data likelihood is

which includes products (and not the sums in the mixture pdf), and as
you will see, makes sampling a bit easier.

Next we need priors.

λ = (λ1, … ,λK)

ψ = {ψzi,d} K × D k

k

p [Y = (y1, … , yn)|Z = (z1, … , zn), ψ, λ] =
n

∏
i=1

D

∏
d=1

Pr (yi = d|zi,ψzi,d)

=
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

,
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POSTERIOR INFERENCE

First, for , the vector of cluster probabilities, we can
use a Dirichlet prior. That is,

For , we can assume independent Dirichlet priors for each cluster
vector . That is, for each ,

Finally, from our distribution on the 's, we have

λ = (λ1, … ,λK)

π[λ] = Dirichlet(α1, … ,αK) ∝
K

∏
k=1

λαk−1
k

.

ψ
ψk = (ψk,1, … ,ψk,D) k = 1, … ,K

π[ψk] = Dirichlet(a1, … , ad) ∝
D

∏
d=1

ψad−1
k,d .

zi

p [Z = (z1, … , zn)|λ] =
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

.
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POSTERIOR INFERENCE

Note that the unobserved variables and parameters are 
, , and .

So, the joint posterior is

Z = (z1, … , zn)
ψ λ

π (Z, ψ, λ|Y ) ∝ p [Y |Z, ψ, λ] ⋅ p(Z|ψ, λ) ⋅ π(ψ, λ)

∝ [
n

∏
i=1

D

∏
d=1

p (yi = d|zi,ψzi,d)] ⋅ p(Z|λ) ⋅ π(ψ) ⋅ π(λ)

∝ (
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

)

      × (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

)

      × (
K

∏
k=1

D

∏
d=1

ψad−1
k,d )

      × (
K

∏
k=1

λαk−1
k

) .
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POSTERIOR INFERENCE

First, we need to sample the 's, one at a time, from their full
conditionals.

For , sample  from a categorical
distribution (multinomial distribution with sample size one) with
probabilities

zi

i = 1, … ,n zi ∈ {1, … ,K}

Pr[zi = k| …] = Pr[zi = k|yi, ψk,λk]

=

=

= .

Pr[yi, zi = k|ψk,λk]

K

∑
l=1

Pr[yi, zi = l|ψl,λl]

Pr[yi|zi = k, ψk] ⋅ Pr[zi = k,λk]

K

∑
l=1

Pr[yi|zi = l, ψl] ⋅ Pr[zi = l,λl]

ψk,d ⋅ λk

K

∑
l=1

ψl,d ⋅ λl
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POSTERIOR INFERENCE

Next, sample each cluster vector  from

where , the number of individuals in cluster  that

are assigned to category  of the levels of .

ψk = (ψk,1, … ,ψk,D)

π[ψk| …] ∝ π (Z, ψ, λ|Y )

∝ (
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

) ⋅ (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

) ⋅ (
K

∏
k=1

D

∏
d=1

ψad−1
k,d ) ⋅ (

K

∏
k=1

λαk−1
k

)

∝ (
D

∏
d=1

ψ
nk,d

k,d ) ⋅ (
D

∏
d=1

ψad−1
k,d )

= (
D

∏
d=1

ψ
ad+nk,d−1
k,d )

≡ Dirichlet (a1 + nk,1, … , aD + nk,D) .

nk,d = ∑
i:zi=k

1[yi = d] k

d y
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POSTERIOR INFERENCE

Finally, sample , the vector of cluster probabilities
from

with , the number of individuals assigned to cluster .

λ = (λ1, … ,λK)

π[λ| …] ∝ π (Z, ψ, λ|Y )

∝ (
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

) ⋅ (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

) ⋅ (
K

∏
k=1

D

∏
d=1

ψad−1
k,d ) ⋅ (

K

∏
k=1

λαk−1
k

)

∝ (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

) ⋅ (
K

∏
k=1

λαk−1
k

)

∝ (
K

∏
k=1

λnk

k
) ⋅ (

K

∏
k=1

λαk−1
k

)

∝ (
K

∏
k=1

λαk+nk−1
k

)

≡ Dirichlet (α1 + n1, … ,αK + nK) ,

nk =
n

∑
i=1

1[zi = k] k
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CATEGORICAL DATA: BIVARIATE CASE

Suppose we have data , for , where

.

This is just a two-way contingency table, so that we are interested in
estimating the probabilities .

Write , which is a  matrix of all the probabilities.

(yi1, yi2) i = 1, … ,n

yi1 ∈ {1, … ,D1}

yi2 ∈ {1, … ,D2}

Pr(yi1 = d1, yi2 = d2) = θd1d2

θ = {θd1d2} D1 × D2
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CATEGORICAL DATA: BIVARIATE CASE

The likelihood is therefore

where  is just the number of

observations in cell  of the contingency table.

p[Y |θ] =
n

∏
i=1

D2

∏
d2=1

D1

∏
d1=1

θ
1[yi1=d1,yi2=d2]
d1d2

=
D2

∏
d2=1

D1

∏
d1=1

θ

n

∑
i=1

1[yi1=d1,yi2=d2]

d1d2

=
D2

∏
d2=1

D1

∏
d1=1

θ
nd1d2

d1d2

nd1d2
=

n

∑
i=1

1[yi1 = d1, yi2 = d2]

(d1, d2)
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POSTERIOR INFERENCE

How can we do Bayesian inference?

Several options! Most common are:

Option 1: Follow the univariate approach.

Rewrite the bivariate data as univariate data, that is, 
.

Write  for each .

Specify Dirichlet prior as 
.

Then, posterior is also Dirichlet with parameters updated with the
number in each cell of the contingency table.

yi ∈ {1, … ,D1D2}

Pr(yi = d) = νd d = 1, … ,D1D2

ν = (ν1, … , νD1D2) ∼ Dirichlet(α1, … ,αD1D2)
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POSTERIOR INFERENCE

Option 2: Assume independence, then follow the univariate approach.

Write , so that
.

Specify independent Dirichlet priors on  and 
.

That is,

.

This reduces the number of parameters from  to 
.

Pr(yi1 = d1, yi2 = d2) = Pr(yi1 = d1) Pr(yi2 = d2)
θd1d2 = λd1ψd2

λ = (λ1, … ,λD1
)

ψ = (ψ1, … ,ψD2
)

λ ∼ Dirichlet(a1, … , aD1
)

ψ ∼ Dirichlet(b1, … , bD2
)

D1D2 − 1
D1 + D2 − 2
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POSTERIOR INFERENCE

Option 3: Log-linear model

;

Specify priors (perhaps normal) on the parameters.

θd1d2
=

eαd1
+βd2

+γd1d2

D2

∑
d2=1

D1

∑
d1=1

eαd1
+βd2

+γd1d2
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POSTERIOR INFERENCE

Option 4: Latent structure model

Assume conditional independence given a latent variable;

That is, write

This is once again, a finite mixture of multinomial distributions.

θd1d2 = Pr(yi1 = d1, yi2 = d2)

=
K

∑
k=1

Pr(yi1 = d1, yi2 = d2|zi = k) ⋅ Pr(zi = k)

=
K

∑
k=1

Pr(yi1 = d2|zi = k) ⋅ Pr(yi2 = d2|zi = k) ⋅ Pr(zi = k)

=
K

∑
k=1

λk,d1ψk,d2 ⋅ ωk.
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CATEGORICAL DATA: EXTENSIONS

For categorical data with more than two categorical variables, it is
relatively easy to extend the framework for latent structure models.

Clearly, there will be many more parameters (vectors and matrices) to
keep track of, depending on the number of clusters and number of
variables!

If interested, read up on finite mixture of products of multinomials.

Can also go full Bayesian nonparametrics with a Dirichlet process mixture
of products of multinomials.

Happy to provide resources for those interested!
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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