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NESTED VS NON-NESTED GROUPING

For the most part so far, we have only been looking at hierarchical models
with one grouping factor.

Sometimes however, we may have to incorporate multiple grouping factors.

Broadly speaking, units at a certain level in a hierarchical specification are
nested within a grouping variable if each unit belongs to a unique level of
that variable.

Conversely, units at a certain level in a hierarchical specification are non-
nested or crossed within a grouping variable if each unit belongs to multiple
levels of that variable.

It is possible to have hierarchical structures that are a combination of both.

Let's look at some hypothetical examples to get a better idea.
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NESTED VS NON-NESTED GROUPING

Example I: suppose we are studying students within classrooms within schools
within counties.

Here, each student belongs to a unique classroom, each classroom belongs to
a unique school, and each school belongs to a unique county.

We then have nesting at every level of this model.

Note: If you could somehow move the classes across schools, then each class
would belong to multiple schools, so that you no longer have nesting at that
level.

However, schools will remain nested within counties.
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NESTED VS NON-NESTED GROUPING

Example II: suppose we have data on earnings for individuals, which are
collected by different job categories but also by states.

If we assume the job categories do not overlap, then each individual are
nested within job categories, so that each one belongs to a unique job-state
combination

However, job categories are still shared (and thus non-nested) across states.

In this example, we have nesting at the first level but not at the second.

In practice, job categories actually do overlap, so that this becomes a clear
example of non-nested grouping factors at multiple levels.

In any case, it is relatively straightforward to extend the models we have
covered so far to these scenarios with more grouping variables, as long as we
are careful about how to implement them in R.
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EXAMPLE

Consider a study in the semiconductor industry of variability in manufacture
of silicon wafers.

For each wafer, the thickness of the oxide layer is measured at three
different sites. The wafers themselves are sampled from eight different
production lots. In this experiment, sites are nested in wafers, and wafers are
nested in lots.

data(Oxide,package="nlme")
head(Oxide,10)

## Grouped Data: Thickness ~ 1 | Lot/Wafer
##    Source Lot Wafer Site Thickness
## 1       1   1     1    1      2006
## 2       1   1     1    2      1999
## 3       1   1     1    3      2007
## 4       1   1     2    1      1980
## 5       1   1     2    2      1988
## 6       1   1     2    3      1982
## 7       1   1     3    1      2000
## 8       1   1     3    2      1998
## 9       1   1     3    3      2007
## 10      1   2     1    1      1991

The site index repeats across wafers; wafer index repeats across lot. Lots are
sort of nested within Source but we ignore that for this illustration.
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MODEL

Let's consider a random effect for lot and a random effect for wafer in the
model

where .

Here  indexes the lot,  indexes the wafer within lot, and  indexes the site
within wafer.

Yijk = γ0 + αi + βij + εijk

αi
iid
∼ N(0,σ2

α) ⊥ βij
iid
∼ N(0,σ2

β
) ⊥ εijk

iid
∼ N(0,σ2

ε )

i j k
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EXERCISE!
For this model, try to derive the following quantities by yourself.

 (different sites on same wafer in same lot)

 (same lot, different wafer, site )

 (same lot, different wafer, site k and site k')

 (different lots)

Using the data ordering, put these values (and others) together to show the
form of the full matrix .

Var(Yijk)

Cov(Yijk,Yijk′)

Cov(Yijk,Yij′k) k

Cov(Yijk,Yij′k′)

Cov(Yijk,Yi′jk)

Cov(Y )
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COVARIANCE STRUCTURE

Using the ordering in the data across the 72 oxide layer thickness
measurements, we expect the covariance matrix to have the following block
structure in lots and wafers.

The darker, smaller squares (higher correlations) are for measures taken on
the same wafers, and the larger squares are for measures taken in the same
lot. Measures from different lots are independent.
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MODEL

We need to be careful about specifying the model because the indices are
nested.

We want a random effect for wafer and a random effect for lot, but we need
to be careful about how we specify it because wafer 1 in lot 1 is not the same
wafer as wafer 1 in lot 2.

To fit a model using the nested indices provided, we use the following code.

#specifying that wafer index is nested in lot
ox1 <- lmer(Thickness ~ 1 + (1|Lot/Wafer), data = Oxide)
summary(ox1)

If the lots had just been numbered differently per lot, the model above would
be equivalent to

ox2 <- lmer(Thickness ~ 1 + (1|Lot) + (1|Wafer), data = Oxide)
summary(ox2)
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MODEL

Here is the first model:

## Linear mixed model fit by REML ['lmerMod']
## Formula: Thickness ~ 1 + (1 | Lot/Wafer)
##    Data: Oxide
## 
## REML criterion at convergence: 454
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8746 -0.4991  0.1047  0.5510  1.7922 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  Wafer:Lot (Intercept)  35.87    5.989  
##  Lot       (Intercept) 129.91   11.398  
##  Residual               12.57    3.545  
## Number of obs: 72, groups:  Wafer:Lot, 24; Lot, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 2000.153      4.232   472.6

Wow, the lot explains a lot of the variability in the response! There is
considerable variability across wafers as well.
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MODEL

What if we used the second code?

ox2 <- lmer(Thickness ~ 1 + (1|Lot) + (1|Wafer), data = Oxide)
summary(ox2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Thickness ~ 1 + (1 | Lot) + (1 | Wafer)
##    Data: Oxide
## 
## REML criterion at convergence: 490.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6115 -0.4268  0.1087  0.3975  2.2815 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Lot      (Intercept) 138.998  11.790  
##  Wafer    (Intercept)   1.493   1.222  
##  Residual              38.349   6.193  
## Number of obs: 72, groups:  Lot, 8; Wafer, 3
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  2000.15       4.29   466.2

Well, the wafer effect went away, and the residual variance got larger. What
happened?
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MODEL

The model assumed wafer 1 was repeated in all 8 lots, wafer 2 was repeated
in all 8 lots, etc. so that there were only 3 wafers (instead of 24). This
watered down the wafer effect (wrong model!) and estimated a correlation
that looks more like this.

Yikes, observations from different lots should be independent, but we
induced them because of the way the wafer index is coded in the data.
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MINOR MODIFICATION

If you don't like using the nesting coding, we can fix the issue with the index
for wafer and use our regular coding.

Below we make the index on wafer unique by appending it to the lot -- so the
first digit of the wafer2 index designates lot number, and the 2nd digit
designates the wafer within the lot.

#library(tidyverse)
Oxide <- mutate(Oxide, Wafer2 = as.numeric(paste0(Lot, Wafer)))
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MINOR MODIFICATION

head(Oxide, 15)

## Grouped Data: Thickness ~ 1 | Lot/Wafer
##    Source Lot Wafer Site Thickness Wafer2
## 1       1   1     1    1      2006     11
## 2       1   1     1    2      1999     11
## 3       1   1     1    3      2007     11
## 4       1   1     2    1      1980     12
## 5       1   1     2    2      1988     12
## 6       1   1     2    3      1982     12
## 7       1   1     3    1      2000     13
## 8       1   1     3    2      1998     13
## 9       1   1     3    3      2007     13
## 10      1   2     1    1      1991     21
## 11      1   2     1    2      1990     21
## 12      1   2     1    3      1988     21
## 13      1   2     2    1      1987     22
## 14      1   2     2    2      1989     22
## 15      1   2     2    3      1988     22
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MINOR MODIFICATION

#now we can also use the coding we're used to
ox3 <- lmer(Thickness ~ 1 + (1|Lot) + (1|Wafer2), data = Oxide)
summary(ox3)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Thickness ~ 1 + (1 | Lot) + (1 | Wafer2)
##    Data: Oxide
## 
## REML criterion at convergence: 454
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8746 -0.4991  0.1047  0.5510  1.7922 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Wafer2   (Intercept)  35.87    5.989  
##  Lot      (Intercept) 129.91   11.398  
##  Residual              12.57    3.545  
## Number of obs: 72, groups:  Wafer2, 24; Lot, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 2000.153      4.232   472.6

Same result as before!
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BACK TO 1988 ELECTIONS

Recall where we stopped.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: bush ~ black + female + edu_label + age_label + (1 | state_label)
##    Data: polls_subset
## 
##      AIC      BIC   logLik deviance df.resid 
##   2662.2   2718.3  -1321.1   2642.2     2005 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8921 -1.0606  0.6420  0.8368  2.7906 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  state_label (Intercept) 0.1738   0.4168  
## Number of obs: 2015, groups:  state_label, 49
## 
## Fixed effects:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)            0.31206    0.19438   1.605  0.10841
## black                 -1.74378    0.21124  -8.255  < 2e-16
## female                -0.09681    0.09593  -1.009  0.31289
## edu_labelHS            0.23282    0.16569   1.405  0.15998
## edu_labelSome College  0.51598    0.17921   2.879  0.00399
## edu_labelCollege Grad  0.31585    0.17454   1.810  0.07036
## age_label30-44        -0.29222    0.12352  -2.366  0.01800
## age_label45-64        -0.06744    0.13738  -0.491  0.62352
## age_label65+          -0.22509    0.16142  -1.394  0.16318
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BACK TO 1988 ELECTIONS

Let’s fit a more sophisticated model that includes other relevant survey
factors, such as

region (note here that states are nested within regions)

prior vote history (note that this is a state-level predictor),

age, education, and the interaction between them.

We can start with

model2 <- glmer(bush ~ black + female + v_prev + edu_label + age_label +
                (1|state_label) + (1|region_label),
                family=binomial(link="logit"),data=polls_subset)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0437183 (tol = 0.002, component 1)
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1988 ELECTIONS ANALYSIS

From the statement of the problem, we also would like to include the
interaction between edu_label and age_label.

However, recall we had the convergence issues because there are so many
parameters to estimate from the interaction terms (16 actually).

Could be that we have too many  or  values for certain
combinations. You should check!

Let's also treat those as varying effects instead. That is,

model3 <- glmer(bush ~ black + female + v_prev + 
                  (1|state_label) + (1|region_label) + 
                  (1|edu_label:age_label),
                family=binomial(link="logit"),data=polls_subset)

This seems to run fine; we are able to borrow information which helps.

bushi = 1 0
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1988 ELECTIONS ANALYSIS
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## bush ~ black + female + v_prev + (1 | state_label) + (1 | region_label) +  
##     (1 | edu_label:age_label)
##    Data: polls_subset
## 
##      AIC      BIC   logLik deviance df.resid 
##   2644.0   2683.3  -1315.0   2630.0     2008 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8404 -1.0430  0.6478  0.8405  2.7528 
## 
## Random effects:
##  Groups              Name        Variance Std.Dev.
##  state_label         (Intercept) 0.03768  0.1941  
##  edu_label:age_label (Intercept) 0.02993  0.1730  
##  region_label        (Intercept) 0.02792  0.1671  
## Number of obs: 2015, groups:  
## state_label, 49; edu_label:age_label, 16; region_label, 5
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.50658    1.03365  -3.392 0.000693
## black       -1.74530    0.21090  -8.275  < 2e-16
## female      -0.09956    0.09558  -1.042 0.297575
## v_prev       0.07076    0.01853   3.820 0.000134
## 
## Correlation of Fixed Effects:
##        (Intr) black  female
## black  -0.036              
## female -0.049 -0.004       
## v_prev -0.992  0.027 -0.006
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1988 ELECTIONS ANALYSIS

Remember that in the first model, the state-level standard deviation was
estimated as 0.41. Looks like we are now able to separate that (for the most
part) into state and region effects.

Interpretation of results:

For a fixed state, education and age bracket, a non-black male
respondent with zero prior average Republican vote share, has odds of 

 of supporting Bush (no one really has 0 value for v_prev).

For a fixed state, sex, education level, age bracket and zero prior
average Republican vote share, a black respondent has 
times (an 83% decrease) the odds of supporting Bush as a non-black
respondent, which is about the same as before.

For each percentage point increase in prior average Republican vote
share, residents of a given state, race, sex, education level age bracket
have  times the odds of supporting Bush.

e−3.51 = 0.03

e−1.75 = 0.17

e0.07 = 1.07
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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