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CATEGORICAL DATA

We've focused on hierarchical models for binary and continuous data.

Of course, our data may follow a wide variety of distributions.

Today we'll consider extensions to categorical data, as interpretations of
these models may be less straightforward than extensions to say count data.

Examples of categorical data: beverage order in a restaurant (water, tea,
coffee, soda, wine, beer, mixed drink) or your favorite Duke stats professor.

First we will review simple logistic regression, and then extend the ideas to
multiple outcomes.
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RECALL LOGISTIC REGRESSION

Recall that for the simple logistic regression model, we had

for each observation .

To get , we solved the logit equation above to get

Consider  a baseline category. Suppose  and 
. Then, the logit expression is essentially

 is thus the (multiplicative) change in odds of  over the baseline 
 when increasing  by one unit.

yi|xi ∼ Bernoulli(πi);    log( ) = β0 + β1xi

πi

1 − πi

i = 1, … , n

πi

πi =
eβ0+β1xi

1 + eβ0+β1xi

Y = 0 Pr[yi = 1|xi] = πi1

Pr[yi = 0|xi] = πi0

log( ) = β0 + β1xi.
πi1

πi0

eβ1 y = 1
y = 0 x
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MULTINOMIAL LOGISTIC REGRESSION

Suppose we have a nominal-scale response variable  with  categories,
that is, .

First, for the random component, we need a distribution to describe .

A standard option for this is the multinomial distribution. THe distribution
gives us a way to characterize

When there are no predictors, the best guess for each  is the sample
proportion of cases with , that is,

When we have predictors, then we want

Y K
Y = 1, … , K

Y

Pr[yi = 1] = π1,  Pr[yi = 2] = π2,   … ,   Pr[yi = K] = πK,    where   
K

∑
k=1

πk = 1.

πk

yi = k

π̂k = .
1[yi = k]

n

Pr[yi = 1|xi] = πi1,   Pr[yi = 2|xi] = πi2,   … ,   Pr[yi = K|xi] = πiK.
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MULTINOMIAL LOGISTIC REGRESSION

That is, we want the 's to be functions of the predictors, like in logistic
regression.

Turns out we can use the same link function, that is the logit function, if we
set one of the levels as the baseline.

Pick a baseline outcome level, say .

Then, the multinomial logistic regression is defined as a set of logistic
regression models for each probability , compared to the baseline, where 

.

That is,

We therefore have  separate logistic regressions in this setup.

πk

Y = 1

πk

k ≥ 2

log( ) = β0k + β1kxi1 + β2kxi2 + … + βpkxip;    k ≥ 2.
πik

πi1

K − 1
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MULTINOMIAL LOGISTIC REGRESSION

The equation for each  is given by

and

Also, we can extract the log odds for comparing other pairs of the response
categories  and , since

πik

πik =    for   k ≥ 2
eβ0k+β1kxi1+β2kxi2+…+βpkxip

1 + ∑K

k=2 eβ0k+β1kxi1+β2kxi2+…+βpkxip

πi1 = 1 −
K

∑
k=2

πik.

k k⋆

log( ) = log (πik) − log (πik⋆)

= log (πik) − log (πi1) − log (πik⋆) + log (πi1)

= [log (πik) − log (πi1)] − [log (πik⋆) − log (πi1)]

= log( ) − log( ) .

πik

πik⋆

πik

πi1

πik⋆

πi1
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MULTINOMIAL LOGISTIC REGRESSION

Each coefficient has to be interpreted relative to the baseline.

Each  represents the baseline log-odds of general preference for 
over .

That is, for a continuous predictor,

 is the increase (or decrease) in the log-odds of  versus 
when increasing  by one unit.

 is the multiplicative increase (or decrease) in the odds of 
versus  when increasing  by one unit.

Exponentiate confidence intervals from log-odds scale to get on the odds
scale.

β0k Y = k
Y = 1

β1k Y = k Y = 1
x1

eβ1k Y = k
Y = 1 x1
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MULTINOMIAL LOGISTIC REGRESSION

Whereas, for a binary predictor,

 is the log-odds of  versus  for the group with ,
compared to the group with .

 is the odds of  versus  for the group with ,
compared to the group with .

Again, exponentiate confidence intervals from log-odds scale to get on the
odds scale.

β1k Y = k Y = 1 x1 = 1
x1 = 0

eβ1k Y = k Y = 1 x1 = 1
x1 = 0
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MODEL DIAGNOSTICS

Use binned residuals like in logistic regression.

Each outcome level has its own raw residual. For each outcome level ,

make an indicator variable equal to one whenever  and equal to
zero otherwise;

compute the predicted probability that  for each record; and

compute the raw residual = indicator value - predicted probability.

For each outcome level, make bins of predictor values and plot average value
of predictor versus the average raw residual. Look for patterns.

You can still compute accuracy just as in the logistic regression model.

ROC on the other hand is not so straightforward; we can draw a different ROC
curve for each level of the response variable. We can also draw pairwise ROC
curves.

k

Y = k

Y = k
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HIERARCHICAL EXTENSION

Consider the model:

Suppose we now have multiple measurements  per participant  in a study or
per group.

For example, we might ask about instructor preference for a list of courses.

How might we add random effects to this model?

log( ) = β0k + β1kxi;    k ≥ 2.
πik

πi1

j i
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HIERARCHICAL EXTENSION

You don't want to assume that just because a participant has more of a
tendency to select category 2 than category 1, they will also have more of a
tendency to select category 3 than category 1.

Thus a single random intercept per person may be insufficient.

We want to allow  random intercepts per person.

That is,

k − 1

log( ) = β0k + β1kxij + bik;    k ≥ 2,   bik ∼ N(0, σ2
k
).

πijk

πij1
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EXAMPLE: CLARITY OF INHALER INSTRUCTIONS

Ezzet and Whitehead (1991) present data from an industry-sponsored clinical
trial designed to evaluate the clarity of two different sets of instructions for
using two different inhalers (the variable treat indicates the inhaler used and
is coded  and ) to deliver an asthma drug.

Each participant rated each inhaler; the variable period indicates whether
the rating is from the first or second inhaler evaluated (in case participants
learned from the first evaluation).

The order of evaluation was randomized across subjects.

After using a device, the participant rated (variable name: rating) the
instruction leaflet as

1 = easy to understand;

2 = only clear after rereading;

3 = not very clear;

4 = confusing.

0.5 −0.5
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CLARITY OF INHALER INSTRUCTIONS

data(inhaler); head(inhaler)

##   subject rating treat period carry
## 1       1      1   0.5    0.5     0
## 2       2      1   0.5    0.5     0
## 3       3      1   0.5    0.5     0
## 4       4      1   0.5    0.5     0
## 5       5      1   0.5    0.5     0
## 6       6      1   0.5    0.5     0

#note, carry variable is a contrast to indicate possible carry over effects
#we won't use the variable
inhaler$treat <- as.factor(inhaler$treat)
inhaler$period <- as.factor(inhaler$period)
inhaler$rating <- as.ordered(inhaler$rating)
table(inhaler$treat)

## 
## -0.5  0.5 
##  286  286

table(inhaler$treat, inhaler$period)

##       
##        -0.5 0.5
##   -0.5  142 144
##   0.5   144 142
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CLARITY OF INHALER INSTRUCTIONS

ggplot(data=inhaler, aes(x=rating)) +
geom_bar(stat="count")+facet_wrap(~treat)

We see equal numbers in each group; it seems that the inhaler insert labeled
0.5 may have been easier to understand.
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CLARITY OF INHALER INSTRUCTIONS

ggplot(data=inhaler, aes(x=rating)) +
geom_bar(stat="count")+facet_wrap(~period)

Period does not seem to have much impact on the ratings.
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MODEL

Let's consider the model

where

 indicates the inhaler insert used by individual  in period , and

 indicates the corresponding period of measurement.

log( ) = β0k + β1ktij + β2kpij + bik;    k = 2, 3, 4;

bik ∼ N(0, σ2
k
).

πijk

πij1

tij i j

pij
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IMPLEMENTATION IN R
#Note that these models can take a while to run
#They can also have relatively low ESS
#Default priors:
  #Half t_3 scale 10 on grand intercept, 
  #Half t_3, scale 10 on SD,
  #Uniform improper on slopes
m1 <- brm(rating ~ treat + period + (1|subject),
          data=inhaler,
          family=categorical(),
          control=list(adapt_delta=0.99),
          chains=3)
summary(m1)
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RESULTS
##  Family: categorical 
##   Links: mu2 = logit; mu3 = logit; mu4 = logit 
## Formula: rating ~ treat + period + (1 | subject) 
##    Data: inhaler (Number of observations: 572) 
## Samples: 3 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~subject (Number of levels: 286) 
##                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(mu2_Intercept)     1.26      0.28     0.73     1.83 1.01      502      769
## sd(mu3_Intercept)     2.06      1.18     0.17     4.79 1.01      371      546
## sd(mu4_Intercept)     1.13      0.91     0.04     3.36 1.01      761     1186
## 
## Population-Level Effects: 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## mu2_Intercept    -0.37      0.20    -0.76     0.02 1.00     4347     2347
## mu3_Intercept    -4.13      1.43    -7.72    -2.19 1.01      495     1057
## mu4_Intercept    -4.45      1.32    -7.76    -2.77 1.00     1227     1430
## mu2_treat0.5     -1.10      0.22    -1.55    -0.69 1.00     3500     2103
## mu2_period0.5     0.10      0.20    -0.28     0.49 1.00     9175     2227
## mu3_treat0.5     -3.02      1.04    -5.37    -1.31 1.00     1694     1473
## mu3_period0.5     0.30      0.63    -0.98     1.51 1.00     4827     2541
## mu4_treat0.5     -1.67      0.92    -3.75    -0.09 1.00     4412     1580
## mu4_period0.5     0.66      0.82    -0.90     2.48 1.00     5537     1862
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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RESULTS

Here we see evidence that when using the inhaler and instructions labeled
0.5, participants are more likely than when using the other inhaler and
instructions (labeled -0.5), to select the easy rating than any of the other
options.

It's hard to estimate these variance components -- data are sparse for the
higher categories.
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ORDINAL RESPONSES

Suppose the categories of our response variable has a natural ordering.

Let's start with data from Example 6.2.2 from Alan Agresti's An Introduction
to Categorical Data Analysis, Second Edition to demonstrate this.

This data is from a General Social Survey. Clearly, political ideology has a
five-point ordinal scale, ranging from very liberal to very conservative.

Political Ideology

Very Liberal Slightly Liberal Moderate Slightly Conservative Very Conservative

Female

Democratic 44 47 118 23 32

Republican 18 28 86 39 48

Male

Democratic 36 34 53 18 23

Republican 12 18 62 45 51
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CUMULATIVE LOGITS

When we have ordinal response with categories , we still want to
estimate

However, we need to use models that can reflect the ordering

Notice that the ordering of probabilities is not for the actual marginal
probabilities, but rather the cumulative probabilities.

The multinomial logistic regression does not enforce this.

Instead, we can focus on building models for the cumulative logits, that is,
models for

1, 2, … , K

Pr[yi = 1|xi] = πi1,   Pr[yi = 2|xi] = πi2,   … ,   Pr[yi = K|xi] = πiK.

Pr[yi ≤ 1|xi] ≤ Pr[yi ≤ 2|xi] ≤ … ≤ Pr[yi ≤ K|xi] = 1.

log( ) = log( ) ,    k = 1, … , K − 1.
Pr[yi ≤ k|xi]

Pr[yi > k|xi]

πi1 + πi2 + … + πik

πi(k+1) + πi(k+2) + … + πiK
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PROPORTIONAL ODDS MODEL

This leads us to the proportional odds model, written as:

There is no need to model  since it is necessarily equal to 1.

Notice that this model looks like a binary logistic regression in which we
combine the first  categories to form a single category (say 1) and the
remaining categories to form a second category (say 0).

Since  is the only parameter indexed by , the  logistic regression
curves essentially have the same shapes but different "intercepts".

That is, the effect of the predictors is identical for all  cumulative log
odds.

This is therefore, a more parsimonious model (both in terms of estimation
and interpretation) than the multinomial logistic regression, when it fits the
data well.

log( ) = β0k + β1xi1 + β2xi2 + … + βpxip,    k = 1, … , K − 1.
Pr[yi ≤ k|xi]

Pr[yi > k|xi]

Pr[yi ≤ K]

k

β0 k K − 1

K − 1

22 / 33



PROPORTIONAL ODDS MODEL

The probabilities we care about are quite easy to extract, since each

with .

Let's focus first on a single continuous predictor, that is,

Here, , actually means that a 1 unit increase in  makes the larger
values of  less likely.

This can seem counter-intuitive in many examples, thus, many books and
software packages often write

instead. Always check the documentation of your function to ascertain the
representation of the model.

Pr[yi = k|xi] = Pr[yi ≤ k|xi] − Pr[yi ≤ k − 1|xi],    k = 2, … , K,

Pr[yi ≤ 1|xi] = Pr[yi = 1|xi]

log( ) = β01 + β1xi1,    k = 1, … , K − 1.
Pr[yi ≤ k|xi]

Pr[yi > k|xi]

β1 > 0 x
Y

log( ) = β01 − β1xi1,    k = 1, … , K − 1
Pr[yi ≤ k|xi]

Pr[yi > k|xi]
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PROPORTIONAL ODDS MODEL

Suppose we have , , and 
 in the first representation

the cumulative probabilities would look like:

K = 5 β1 = 1.1
(β01, β02, β03, β04) = (0.5, 1, 2, 2.5)

log( ) = β0j + β1xi1,    k = 1, … , 4,
Pr[yi ≤ k|xi]

Pr[yi > k|xi]
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PROPORTIONAL ODDS MODEL

But with , and the same values , and 
 in the second representation

the cumulative probabilities would look like:

K = 5 β1 = 1.1
(β01, β02, β03, β04) = (0.5, 1, 2, 2.5)

log( ) = β0j − β1xi1,    k = 1, … , 4,
Pr[yi ≤ k|xi]

Pr[yi > k|xi]
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PROPORTIONAL ODDS MODEL

Take our example on political ideology for instance. Suppose we fit the model

where  is an indicator variable for political party, with  for Democrats
and  for Republicans.

Then,

For any ,  is the log-odds of a Democrat, when compared to a
Republican, of being more conservative than  compared to being more
liberal than .

For any ,  is the odds of a Democrat, when compared to a
Republican, of being more conservative than  compared to being more
liberal than .

If , a Democrat's response is more likely than a Republican's response
to be in the conservative direction than in the liberal direction.

log( ) = β0k − β1xi1,    k = 1, … , 4,
Pr[ideologyi ≤ k|xi]

Pr[ideologyi > k|xi]

x x = 1
x = 0

k β1

j
j

k eβ1

j
j

β1 > 0
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HIERARCHICAL EXTENSION

Again consider the model

Just as before, it is relatively straightforward to consider extensions to this
model.

Unlike before however, it makes sense to have one random intercept per
person, since we have ordinal responses.

So, we can write

log( ) = β0k − β1xi,    k = 1, … , K − 1.
Pr[yi ≤ k|xi]

Pr[yi > k|xi]

log( ) = β0k − [β1xij + bi] ;    k = 1, … , K − 1;

bi ∼ N(0, σ2).

Pr[yij ≤ k|xij]

Pr[yij > k|xij]
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BACK TO INHALER DATA

Recall that the outcome from the inhaler data is actually ordinal.

That is,

1 = easy to understand

2 = only clear after rereading

3 = not very clear

4 = confusing.

Thus, it makes sense to also consider a proportional odds model here.

28 / 33



MODEL

We can then fit the model:

where

 indicates the inhaler insert used by individual  in period , and

 indicates the corresponding period of measurement.

log( ) = β0k − [β1tij + β2pij + bi] ;    k = 1, 2, 3;

bi ∼ N(0, σ2).

Pr[yij ≤ k|xij]

Pr[yij > k|xij]

tij i j

pij
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IMPLEMENTATION IN R
#BRMS follows the convention I mentioned earlier with the -ve slopes
#so need to be careful when interpreting the model
m2 <- brm(rating ~ treat + period + (1|subject),
          data=inhaler,
          family=cumulative(logit),
          control=list(adapt_delta=0.95))
summary(m2)
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RESULTS
##  Family: cumulative 
##   Links: mu = logit; disc = identity 
## Formula: rating ~ treat + period + (1 | subject) 
##    Data: inhaler (Number of observations: 572) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~subject (Number of levels: 286) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.18      0.24     0.71     1.65 1.00      877     1560
## 
## Population-Level Effects: 
##              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept[1]     0.15      0.18    -0.20     0.52 1.00     8133     3316
## Intercept[2]     3.29      0.31     2.70     3.92 1.00     2502     3094
## Intercept[3]     4.59      0.44     3.76     5.55 1.00     3366     3127
## treat0.5        -1.28      0.21    -1.69    -0.87 1.00     4261     2778
## period0.5        0.20      0.20    -0.19     0.58 1.00     9746     2695
## 
## Family Specific Parameters: 
##      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## disc     1.00      0.00     1.00     1.00 1.00     4000     4000
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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RESULTS

Here we see evidence that when using the inhaler and instructions labeled
0.5, participants are more likely than when using the other inhaler and
instructions (labeled -0.5) to select the "easy" rating than any of the other
options.

Since , that is , those with the 0.5 inhaler are more likely than
to be in the "easy" direction than in the "confusing" direction, those with the
-0.5 inhaler.

So we have, with the 0.5 inhaler, participants have 
 times the odds of picking "easy" versus the other

3 categories.

They also then have  times the odds of picking the
first two categories, that is "easy or only clear after rereading", versus the
other 2 categories. And so on...

Again, there's not much of a learning effect reflected in the period estimate.

β1 < 0 −1.27

1.27 with CI: (0.88, 1.69)

1.27 with CI: (0.88, 1.69)
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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